• 제목/요약/키워드: Bioactive Peptides

검색결과 100건 처리시간 0.022초

Ovalbumin: A potential functional protein

  • Maggonage Hasini Udeshika Maggonage;Prabudhdha Manjula;Dong Uk Ahn;Edirisingha Dewage Nalaka Sandun Abeyrathne
    • 한국식품저장유통학회지
    • /
    • 제31권3호
    • /
    • pp.346-359
    • /
    • 2024
  • Although ovalbumin makes up 54% of the total egg white proteins, individual protein usage is rare. The primary applications of ovalbumin in the food industry relate to other proteins, such as whole egg whites. Ovalbumin has remarkable functional properties, such as those of gelation, foaming, and emulsification, which are crucial in the processing of food, however, its application as a standalone functional protein is severely constrained due to separation issues. In recent years, new methodologies for the large-scale separation of ovalbumin have emerged. Meantime, ovalbumin was identified as a good source to produce bioactive peptides with a variety of functional properties, including antibacterial, antioxidant, and angiotensin-converting-enzyme inhibitory actions, according to research. Newly discovered bioactive peptides from ovalbumin can be used in the food sector in addition to their well-known functional properties to create health-promoting products. Benefits extend beyond the food business to numerous other sectors, such as the pharmaceutical and cosmetic industries. Consequently, a gap between the existing and prospective future uses is found. The main goals of this study were to determine some possible factors for the long-term neglect of the major protein and to determine the growing potential for applications of ovalbumin and peptides.

Effect of Yeonsan Ogye bioactive peptides on anti-oxidant indexes in rats' liver

  • Kim, Hye Won;Shim, Jung Hun;Kim, Ki Nam
    • Journal of Nutrition and Health
    • /
    • 제52권4호
    • /
    • pp.408-411
    • /
    • 2019
  • Purpose: This study investigated the effect of bioactive Yeonsan Ogye peptides (YOPs) intake on changes in the hepatic anti-oxidant indexes in male rats. Methods: Sprague-Dawley male rats were divided into 3 groups and given a casein-based AIN-93G diet and distilled water ad libitum without any added YOPs (control), distilled water with 250 mg of YOPs (Y250), or 500 mg of YOPs (Y500) per kg of body weight for 4 weeks. YOP dose was decided as referred to in the referenced study where toxicity did not occur. The hepatic anti-oxidant indexes were determined using a commercial kit. Statistical analysis was performed using SPSS version 23.0 and are expressed as $mean{\pm}standard$ error of mean. Differences among the groups were evaluated by one-way analysis of variance followed by post hoc Duncan's multiple comparisons test. Results: There were no differences in the body weights, weight gain, food intake, food efficiency ratio, or organ weight, including liver, kidney, spleen, thymus, and epididymal fat, among all of the groups. The hepatic nitric oxide (NO) level in the Y500 group was lower than that in the control and Y250 groups, and the hepatic malondialdehyde (MDA) level was lower in the Y500 group than in the Y250 group. The differences in hepatic superoxide dismutase (SOD) and catalase (CAT) activities were not statistically significant between the groups. From these results we speculated that YOPs may have anti-oxidative abilities to regulate NO and MDA production without affecting SOD and CAT activities. Conclusion: YOPs are presumed to act as anti-oxidants in the animal or human body.

갈색거저리 유래 저분자단백질체의 분석 (Proteomic Study for Low Molecular Weight Peptides in the Mealworm Tenebrio molitor)

  • 김일석;방우영;방규호;김삼웅
    • 생명과학회지
    • /
    • 제31권2호
    • /
    • pp.219-222
    • /
    • 2021
  • 본 연구에서는 저분자펩타이드로부터 유래되는 단백질을 확인하기 위해 갈색거저리의 유충, 번데기, 성충의 저분자 단백질체 분석을 수행하였다. 저분자 펩타이드 분석으로부터 유래된 54 단백질이 최종적으로 확인되었다. 확인된 단백질 중 성체에만 존재하는 단백질이 가장 높은 빈도로 존재하였고, 그 다음은 성체와 유충에 동시 존재하는 단백질이 높은 빈도로 탐색되었다. 그러나 번데기를 포함하는 그룹들은 모두 낮은 빈도로 감지되었다. 분석된 단백질에 orthologous classification의 결과에서 일반적 기능 예견만(general function prediction only) 보이는 단백질이 가장 높은 빈도로 조사되었다. 크로마틴 구조와 동적상태(chromatin structure and dynamics)에 연관된 단백질은 비교적 높은 빈도로 탐색되었다. 또한, 아미노산 수송과 물질대사(amino acid transport and metabolism) 및 탄수화물 수송 및 물질대사(carbohydrate transport and metabolism)와 연관된 단백질도 높은 빈도로 분석되었다. 그러나 뉴클레오타이드 수송 물질대사, 코엔자임 수송 및 물질대사, 세포외 구조, 모빌로좀(mobilome), 및 핵 구조와 연관된 단백질은 전혀 탐지되지 않았다. 따라서 크로마틴, 아미노산, 탄수화물 물질대사와 연관된 단백질들이 보다 쉽게 저분자 펩타이드로 전환되어 체액 중에 잔존될 수 있는 것으로 보이며, 이들 펩타이드들이 생리활성물질로써 기능을 수행할 수 있을 가능성이 높은 것으로 추정된다.

해양 생물 유래의 항균 펩타이드 및 작용 기작 (Antimicrobial Peptides Derived from the Marine Organism(s) and Its Mode of Action)

  • 황보미;이준영;이동건
    • 한국미생물·생명공학회지
    • /
    • 제38권1호
    • /
    • pp.19-23
    • /
    • 2010
  • Recently, marine organisms are emerging as a leading group for identifying and extracting novel bioactive substances. These substances are known to possess a potential regarding not only as a source of pharmaceutical products but also their beneficial effects on humans. Among the substances, antimicrobial peptides (AMPs) specifically have attracted considerable interest for possible use in the development of new antibiotics. AMPs are characterized by relatively short cationic peptides containing the ability to adopt a structure in which cationic or hydrophobic amino acids are spatially scattered. Although a few reports address novel marine organisms-derived AMPs, their antimicrobial mechanism(s) are still remain unknown. In this review, we summarized the peptides previously investigated, such as Pleurocidin, Urechistachykinins, Piscidins and Arenicin-1. These peptides exhibited significant antimicrobial activities against human microbial pathogens without remarkable hemolytic effects against human erythrocytes, and their mode of actions are based on permeabilization of the plasma membrane of the pathogen. Therefore, the study of antimicrobial peptides derived from marine organisms may prove to be useful in the design of future therapeutic antimicrobial drugs.

Isolation, Purification and Characterization of Antioxidative Bioactive Elastin Peptides from Poultry Skin

  • Nadalian, Mehdi;Kamaruzaman, Nurkhuzaiah;Yusop, Mohd Shakir Mohamad;Babji, Abdul Salam;Yusop, Salma Mohamad
    • 한국축산식품학회지
    • /
    • 제39권6호
    • /
    • pp.966-979
    • /
    • 2019
  • Muscle-based by-products are often undervalued although commonly reported having a high amount of natural bioactive peptides. In this study, elastin was isolated from the protein of broiler hen skin while its hydrolysate was prepared using Elastase. Assessment of antioxidative properties of elastin-based hydrolysate (EBH) was based on three different assays; 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical and metal chelating ability. The EBH was purified further using ultrafiltration, gel filtration and Reverse- Phase High-Performance Liquid Chromatography (RP-HPLC). The IC50 of ABTS radical activities for EBH were decreased as EBH further purified using ultrafiltration (EBH III; 0.66 mg/mL)>gel filtration (EB-II; 0.42 mg/mL)>RP-HPLC (EB-II4; 0.12 mg/mL). The sequential identification of the peptide was done by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/ TOF-MS) of the potent fractions obtained from RP-HPLC (EB-II4). The presence of hydrophobic amino acids (Val and Pro) in the peptide sequences could potentially contribute to the high antioxidant activity of EBH. The sequences GAHTGPRKPFKPR, GMPGFDVR and ADASVLPK were identified as antioxidant peptides. In conclusion, the antioxidative potential from poultry skin specifically from elastin is evident and can be explored to be used in many applications such as health and pharmaceutical purposes.

Enzymatic Hydrolysis of Ovotransferrin and the Functional Properties of Its Hydrolysates

  • Rathnapala, Ethige Chathura Nishshanka;Ahn, Dong Uk;Abeyrathne, Edirisingha Dewage Nalaka Sandun
    • 한국축산식품학회지
    • /
    • 제41권4호
    • /
    • pp.608-622
    • /
    • 2021
  • Bioactive peptides have great potentials as nutraceutical and pharmaceutical agents that can improve human health. The objectives of this research were to produce functional peptides from ovotransferrin, a major egg white protein, using single enzyme treatments, and to analyze the properties of the hydrolysates produced. Lyophilized ovotransferrin was dissolved in distilled water at 20 mg/mL, treated with protease, elastase, papain, trypsin, or α-chymotrypsin at 1% (w/v) level of substrate, and incubated for 0-24 h at the optimal temperature of each enzyme (protease 55℃, papain 37℃, elastase 25℃, trypsin 37℃, α-chymotrypsin 37℃). The hydrolysates were tested for antioxidant, metal-chelating, and antimicrobial activities. Protease, papain, trypsin, and α-chymotrypsin hydrolyzed ovotransferrin relatively well after 3 h of incubation, but it took 24 h with elastase to reach a similar degree of hydrolysis. The hydrolysates obtained after 3 h of incubation with protease, papain, trypsin, α-chymotrypsin, and after 24 h with elastase were selected as the best products to analyze their functional properties. None of the hydrolysates exhibited antioxidant properties in the oil emulsion nor antimicrobial property at 20 mg/mL concentration. However, ovotransferrin with α-chymotrypsin and with elastase had higher Fe3+-chelating activities (1.06±0.88%, 1.25±0.24%) than the native ovotransferrin (0.46±0.60%). Overall, the results indicated that the single-enzyme treatments of ovotransferrin were not effective to produce peptides with antioxidant, antimicrobial, or Fe3+-chelating activity. Further research on the effects of enzyme combinations may be needed.

우유 생리활성 물질의 임상적 적용 (Clinical Applications of Bioactive Milk Components: A Review)

  • 한래희;윤성희;김근배
    • Journal of Dairy Science and Biotechnology
    • /
    • 제37권3호
    • /
    • pp.167-176
    • /
    • 2019
  • Milk contains essential nutrients and functional compounds, such as calcium, fat-soluble vitamins A, D, E, and K, carotenoids, bioactive peptides, and sphingolipids. The bioactive molecules from milk are not expensive and have an added advantage of being derived from food. Therefore, they are more stable and have a broader spectrum than that of other chemicals. Bioactive milk components are useful for treating non-digestive tract disorders, such as cancer, cognitive decline, and hypertension. However, the clinical application of certain breast milk ingredients is limited due to the lack of a large-scale production technology. Once the scaled-up production of lactoferrin became possible, clinical applications were devised and evaluated. Similarly, human alpha-lactalbumin made lethal to tumor cells (HAMLET) can be produced on a large scale as a recombinant protein in microorganisms or in transgenic cattle using suitable separation systems. HAMLET can be used to treat human skin papilloma and cancer. Studies on breast milk that explored the clinical applications of the bioactive components of breast milk have spurred the development of translational medicine and breast milk-derived therapeutics. Some breast-milk derived therapeutic agents are already available to clinicians. Many components of breast milk have shown efficacy in pre-clinical studies and have valid clinical evaluations.

Characterization of antioxidative peptide purified from black eelpout (Lycodes diapterus) hydrolysate

  • Lee, Jung Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제22권10호
    • /
    • pp.22.1-22.7
    • /
    • 2019
  • The functional peptides from protein hydrolysates of various fishery sources have been identified such as antioxidant activity. The main intention of this study was purification and characterization of antioxidative peptide from black eelpout muscle. The antioxidative peptides were purified from black eelpout (Lycodes diapterus) muscle using different proteases. Antioxidant activity of black eelpout hydrolysates was evaluated using DPPH radical scavenging activity. Among six hydrolysates, the pepsin hydrolysate had the highest antioxidant activity compared to the other hydrolysates. Therefore, it was further purified and a peptide with seven amino acid residues of DLVKVEA (784 Da) was identified by amino acid sequence analysis. The EC50 value for scavenging DPPH radicals by purified peptide was 688.77 μM. Additionally, the purified peptide exhibited protective effect against DNA damage induces by oxidation in mouse macrophages (RAW 264.7 cells). The results of this study suggest that black eelpout muscle protein hydrolysate could potentially contribute to development of bioactive peptides in basic research.

Nanofood and Its Materials as Nutrient Delivery System (NDS)

  • Kim, Dong-Myong;Cho, Gyu-Seong
    • Journal of Applied Biological Chemistry
    • /
    • 제49권2호
    • /
    • pp.39-47
    • /
    • 2006
  • Incorporation of bioactive compounds such as vitamins, probiotics, bioactive peptides, and antioxidants into Nutrient Delivery System (NDS) for 'nanofood' provides simple way to develop novel functional foods that may have physiological benefits or reduce risks of diseases. As vital nutrient in nanofood, proteins possess unique functional properties including ability to form gels and emulsions, which allow them to be ideal nanofood materials for encapsulation of bioactive compounds. Based on protein physico-chemical properties, this review describes potential role of nanofood materials for development of NDS in hydrogel form, micro-or nano-particles. Applications of these nanofood materials to protect delivery-sensitive nutraceutical compounds are illustrated, and impacts of particle size on release properties are emphasized.

Therapeutic effect of marine bioactive substances against periodontitis based on in vitro, in vivo, and clinical studies

  • Tae-Hee Kim;Se-Chang Kim;Won-Kyo Jung
    • Fisheries and Aquatic Sciences
    • /
    • 제26권1호
    • /
    • pp.1-23
    • /
    • 2023
  • Marine bioactive substances (MBS), such as phlorotannins, collagens, peptides, sterols, and polysaccharides, are increasing attention as therapeutic agents for several diseases due to their pharmacological effects. Previous studies have demonstrated the biological activities of MBS including antibacterial, anticoagulant, antidiabetic, antimicrobial, anti-inflammatory activities. Among numerous human diseases, periodontitis is one of the high-prevalence inflammatory diseases in the world. To treat periodontitis, several surgeries (bone grafting, flap surgery, and soft tissue graft) are usually used. However, the surgery for patients with chronic periodontitis induces several side effects, including additional inflammatory responses at the operated site, chronic wound healing, and secondary surgery. Therefore, this review assessed the most recent trends in MBS using Google Scholar, PubMed, and Web of Science search engines to develop marine-derived therapeutic agents for periodontitis. Further, we summarized the current applications and therapeutic potential of MBS to serve as a reference for developing novel technologies applied to MBS against periodontitis treatment.