• Title/Summary/Keyword: Bioaccessibility

Search Result 15, Processing Time 0.016 seconds

Enhancement of Antioxidant Quality of Green Leafy Vegetables upon Different Cooking Method

  • Hossain, Afzal;Khatun, Mst. Afifa;Islam, Mahfuza;Huque, Roksana
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • Antioxidant rich green leafy vegetables including garden spinach leaf, water spinach leaf, Indian spinach leaf, and green leaved amaranth were selected to evaluate the effects of water boiling and oil frying on their total phenolic content (TPC), total flavonoid content (TFC), reducing power (RP), and antioxidant capacity. The results revealed that there was a significant increase in TPC, TFC, and RP in all the selected vegetables indicating the effectiveness of the cooking process on the antioxidant potential of leafy vegetables. Both cooking processes enhanced significantly (P<0.05) the radical scavenging ability, especially the oil fried samples showed the highest values. There is a significant reduction in the vitamin C content in all the vegetables due to boiling and frying except in the Indian spinach leaf. However, the present findings suggest that boiling and frying can be used to enhance the antioxidant ability, by increasing the bioaccessibility of health-promoting constituents from the four vegetables investigated in this study.

Changes in Antioxidant Activity and Total Phenolic Content of Water Spinach (Ipomoea aquatic Forsk.) under In Vitro Biomimicking System

  • Lee, A-Young;Kim, Young-Suk;Shim, Soon-Mi
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.342-345
    • /
    • 2010
  • The purpose of current study was to examine bioaccessibility of antioxidant activity and total phenolic content in each part of water spinach (Ipomoea aquatic Forsk.). In vitro biomimicking system simulated human digestive fluid was employed in order to measure bioavailable anti-oxidative effect and phenolic content. Antioxidant activity and total phenolic content was measured by using the DPPH method and the Folin-Ciocalteu assay, respectively. Stem of water spinach had a higher DPPH free radical scavenging effect (5.43 mg/mL for $IC_{50}$) than leaf (5.95 mg/mL for $IC_{50}$), while leaf had a greater level of total phenolic content (287.45 ${\mu}g$ GAE/mL) than stem (216.45 ${\mu}g$ GAE/mL). Bioaccessible antioxidant capacity and digestive stability of total phenolic content showed a similar pattern to what found in raw materials. Our result also indicated that total phenolic content was not found to be a major marker for prediction of antioxidant activity. It is plausible that other constituents such as vitamin E and C in water spinach could be contributors for antioxidant activities.

Research Trend on the Accumulation Routes of Microplastics in Soil and Their Analytical Methodologies (토양 내 미세플라스틱의 축적경로 및 분석기법 연구 동향)

  • Choi, Hyung-Jun;An, Jinsung;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.360-367
    • /
    • 2020
  • In this study, the accumulation and distribution routes of microplastics in soil environment were examined, and their analytical methodologies were summarized. Density separation and removal process of inhibition materials were introduced for the separation of microplastics in soil and the basic principles and limitations of quantitative and qualitative analyses including pyrolysis gas chromatography mass spectrometry, µ-Raman spectrometry, fourier transform infrared spectrometry, and microscopes were investigated. Chemical extraction methods for the analysis of mediated hazardous substance (additives and sorbed matters) in microplastics were also discussed with focusing on in vitro bioaccessibility assay for the human oral exposure route. Based on the described methodologies for the analysis of microplastics in soil, it is expected that these methods enable to select appropriate analysis techniques in consideration of medium state, contamination level and sample quantity.

Biodynamic understanding of mercury accumulation in marine and freshwater fish

  • Wang, Wen-Xiong
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.15-35
    • /
    • 2012
  • Mercury (Hg) is a global environmental pollutant that has been the cause of many public concerns. One particular concern about Hg in aquatic systems is its trophic transfer and biomagnification in food chains. For example, the Hg concentration increases with the increase of food chain level. Fish at the top of food chain can accumulate high concentrations of Hg (especially the toxic form, methylmercury, MeHg), which is then transferred to humans through seafood consumption. Various biological and physiochemical conditions can significantly affect the bioaccumulation of Hg-including both its inorganic (Hg(II)) and organic (MeHg) forms-in fish. There have been numerous measurements of Hg concentrations in marine and freshwater fish worldwide. Many of these studies have attempted to identify the processes leading to variations of Hg concentrations in fish species from different habitats. The development of a biokinetic model over the past decade has helped improve our understanding of the mechanisms underlying the bioaccumulation processes of Hg in aquatic animals. In this review, I will discuss how the biokinetic modeling approach can be used to reveal the interesting biodynamics of Hg in fish, such as the trophic transfer and exposure route of Hg(II) and MeHg, as well as growth enrichment (the increases in Hg concentration with fish size) and biomass dilution (the decreases in Hg concentration with increasing phytoplankton biomass). I will also discuss the relevance of studying the subcellular fates of Hg to predict the Hg bioaccessibility and detoxification in fish. Future challenges will be to understand the inter- and intra-species differences in Hg accumulation and the management/mitigation of Hg pollution in both marine and freshwater fish based on our knowledge of Hg biodynamics.

Impact of Cooking Method on Bioactive Compound Content and Antioxidant Capacity of Cabbage (양배추 가공조건에 따른 생리활성 물질의 함량 및 항산화 활성)

  • Hwang, Eun-Sun;Thi, Nhuan Do
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.184-190
    • /
    • 2015
  • We evaluated the effects of three common cabbage cooking methods (blanching, steaming and microwaving) on glucosinolate and S-methylmethionine (SMM) content and total antioxidant capacity of cabbage leaves. We detected four glucosinolates, including glucoraphanin, sinigrin, glucobrassicin, and 4-methoxyglucobrassicin, by high-pressure liquid chromatography (HPLC). Cabbage contained high levels of SMM (192.85 mg/100 g dry weight), compared to other cruciferous vegetables. Blanching cabbage leaves for one to ten minutes decreased glucosinolate and SMM levels, whereas microwaving or steaming cabbage for 5-10 min preserved glucosinolate and SMM levels. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2-2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities of cooked cabbage generally decreased as cooking time increased, but microwave cooking had a smaller negative effect on antioxidant activities than blanching or steaming. This study demonstrates that some domestic cooking methods, such as microwaving and steaming, can increase the bioaccessibility of glucosinolates and SMM, highlighting the positive role of cooking on the nutritional qualities of cabbage.