• Title/Summary/Keyword: Bio-waste

Search Result 370, Processing Time 0.028 seconds

Phytoremediation of Heavy Metal Contaminated Soils Using Transgenic Plants (중금속 오염토양의 식물정화 기술과 형질전환 식물의 이용에 관한 최근 연구동향)

  • Ok, Yong-Sik;Kim, Jeong-Gyu;Yang, Jae E.;Kim, Hee-Joung;Yoo, Kyung-Yoal;Park, Chang-Jin;Jeong, Deok-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.396-406
    • /
    • 2004
  • Current physical and chemical methodologies, conventionally used to clean up metal contaminated soils, are generally too expensive to apply in large hazardous waste sites including agricultural lands adjacent to closed or abandoned metal mines. Phytoremediation using plants to extract, sequester and detoxify environmental pollutants is one of the cost-effective and aesthetically-pleasing alternatives, compared with environmentally destructive remedial methods currently being practiced. But, phytoremediation has some limitations such as time consuming and low performance: in general, it is seasonally dependent and slower in removing metals than other methods, and metal accumulating plants are slow growers. Improvement of plants for metal tolerance, accumulation, and translocation using genetic engineering techniques recently opened up new possibilities for phytoremediation. In this paper, we have discussed about recent developments in conventional and genetically engineered phytoremediation. For the conventional phytoremediation, focuses are on the natural hyperaccumulator and the chemically assisted phytoremediation. Some pros and cons on the phytoremediation using transgenic plants, coupled with focusing on the mechanistic view points, are also discussed. It might be concluded that the transgenic plants will be effective tools in the practical application of phytoremediation especially for the highly contaminated soils but mechanisms involved should be deeply understood in advance.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

Estimation of Crop Water Requirement Changes Due to Future Land Use and Climate Changes in Lake Ganwol Watershed (간월호 유역의 토지이용 및 기후변화에 따른 논밭 필요수량 변화 추정)

  • Kim, Sinaee;Kim, Seokhyeon;Hwang, Soonho;Jun, Sang-Min;Song, Jung-Hun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.61-75
    • /
    • 2021
  • This study aims to assess the changes in crop water requirement of paddy and upland according to future climate and land use changes scenarios. Changes in the spatiotemporal distribution of temperature and precipitation are factors that lower the stability of agricultural water supply, and predicting the changes in crop water requirement in consideration of climate change can prevent the waste of limited water resources. Meanwhile, due to the recent changes in the agricultural product consumption structure, the area of paddy and upland has been changing, and it is necessary to consider future land use changes in establishing an appropriate water use plan. Climate change scenarios were derived from the four GCMs of the CMIP6, and climate data were extracted under two future scenarios, namely SSP1-2.6 and SSP5-8.5. Future land use changes were predicted using the FLUS (Future Land Use Simulation) model. Crop water requirement in paddy was calculated as the sum of evapotranspiration and infiltration based on the water balance in a paddy field, and crop water requirement in upland was estimated as the evapotranspiration value by applying Penman-Monteith method. It was found that the crop water requirement for both paddy and upland increased as we go to the far future, and the degree of increase and variability by time showed different results for each GCM. The results derived from this study can be used as basic data to develop sustainable water resource management techniques considering future watershed environmental changes.

Wastewater-based epidemiology for the management of community lifestyle and health: An unexplored value of water infrastructure (하수기반역학을 이용한 커뮤니티 생활상 및 건강 관리: 물 인프라의 새로운 가치)

  • Jho, Eun-Hea;Kim, Hyoung-Il;Choi, Yongju;Youn, Youngho;Lee, Doyeon;Kim, Geunyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.63-77
    • /
    • 2019
  • Traditional wastewater research mainly focuses on 1) estimating the amount of waste entering sewage treatment facilities, 2) evaluating the treatment efficiency of sewage facilities, 3) investigating the role of sewage treatment effluent as a point source, and 4) designing and managing sewage treatment facilities. However, since wastewater contains a variety of chemical and biological substances due to the discharge of human excreta and material used for daily living into it, the collective constituents of wastewater are likely a reflection of a community's status. Wastewater-based epidemiology (WBE), an emerging and promising field of study that involves the analysis of substances in wastewater, can be applied to monitor the state of a defined community. WBE provides opportunities for exploiting indicators in wastewater to fulfill various objectives. The data analyzed under WBE are those pertaining to selected natural and anthropogenic substances in wastewater that are a result of the discharge of metabolic excreta, illicit or legal drugs, and infectious pathogens into the wastewater. This paper reviews recent progress in WBE and addresses current challenges in the field. It primarily discusses several representative applications including the investigation of drug consumption across different communities and the management of community disease and health. Finally, it summarizes established indicators for WBE.

Evaluation of field application of biocover and biofilter to reduce landfill methane and odor emissions (매립지 메탄 및 악취 배출 저감을 위한 바이오커버 및 바이오필터의 현장적용 평가 연구)

  • Chae, Jeong-Seok;Jeon, Jun-Min;Oh, Kyeong-Cheol;Ryu, Hee-Wook;Cho, Kyung-Suk;Kim, Shin-Do
    • Journal of odor and indoor environment
    • /
    • v.16 no.2
    • /
    • pp.139-149
    • /
    • 2017
  • In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover-1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.

Nanofiber Membrane based Colorimetric Sensor for Mercury (II) Detection: A Review (나노 섬유 멤브레인을 기반으로 한 수은(II) 색변화 검출 센서에 대한 총설)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.241-252
    • /
    • 2021
  • Rapid industrialization with growing population leads to environmental water pollution. Demand in generation of clean water from waste water is ever increasing by scarcity of rain water due to change in weather pattern. Colorimetric detection of heavy metal present in clean water is very simple and effective technique. In this review membrane based colorimetric detection of mercury (II) ions are discussed in details. Membrane such as cellulose, polycaprolactone, chitosan, polysulfone etc., are used as support for metal ion detection. Nanofiber based materials have wide range of applications in energy, environment and biomedical research. Membranes made up of nanofiber consist up plenty of functional groups available in the polymer along with large surface area and high porosity. As a result, it is easy for surface modification and grafting of ligand on the fiber surface enhanced nanoparticles attachment.

Optimization and Packed Bed Column Studies on Esterification of Glycerol to Synthesize Fuel Additives - Acetins

  • Britto, Pradima J;Kulkarni, Rajeswari M;Narula, Archna;Poonacha, Sunaina;Honnatagi, Rakshita;Shivanathan, Sneha;Wahab, Waasif
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.70-79
    • /
    • 2022
  • Biodiesel production has attracted attention as a sustainable source of fuel and is a competitive alternate to diesel engines. The glycerol that is produced as a by-product is generally discarded as waste and can be converted to green chemicals such as acetins to increase bio-diesel profitability. Acetins find application in fuel, food, pharmaceutical and leather industries. Batch experiments and analysis have been previously conducted for synthesis of acetins using glycerol esterification reaction aided by sulfated metal oxide catalysts (SO42-/CeO2-ZrO2). The aim of this study was to optimize process parameters: effects of mole ratio of reactants (glycerol and acetic acid), catalyst concentration and reaction temperature to maximize glycerol conversion/acetin selectivity. The optimum conditions for this reaction were determined using response surface methodology (RSM) designed as per a five-level-three-factor central composite design (CCD). Statistica software 10 was used to analyze the experimental data obtained. The optimized conditions obtained were molar ratio - 1:12, catalyst concentration - 6 wt.% and temperature -90 ℃. A packed bed reactor was fabricated and column studies were performed using the optimized conditions. The breakthrough curve was analyzed.

Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model (유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.

Studies on Anti-Inflammatory and Anti-Melanogenic Effect of Grape Fruit Stem Extract (포도송이가지 추출물의 항염증 및 미백효능에 대한 연구)

  • Choi, Anna;Lee, Hyun-Seo;Kim, Jang Ho;Cho, Byoung Ok;Shin, Jae Young;Jeong, Seung-Il;Jang, Seon Il
    • The Korea Journal of Herbology
    • /
    • v.32 no.3
    • /
    • pp.71-78
    • /
    • 2017
  • Objectives : The various grape extracts derived from grape pulp, seed and skin, containing various types of polyphenols and flavonoids, have been known to have anti-inflammatory, antioxidant and improve cardiovascular condition as well as sun's damaging effects. However, there have been rare reports of various beneficial effects of grape fruit stem extract (GFSE), one of the waste products of grapes. We investigated anti-inflammatory and melanogenesis inhibitory effects of GFSE. Methods : One-hundred gram of grape fruit stem was extracted with 80% ethanol at room temperature for 3 days. After filtration, the ethanol was removed using vacuum evaporator, then lyophilized to obtain the dry extract which was stored at $-20^{\circ}C$ until used. NO levels were measured by using Greiss reagent. Prostaglandin $E_2$ ($PGE_2$) production was measured by ELISA assay. The expression levels of iNOS, COX-2, TRP-1 and TRP-2 were evaluated by western blot analysis. Results : GFSE reduced the level of nitric oxide and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependent manner, compared to control. Expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein were also effectively inhibited by the GFSE. In a tyrosinase inhibitory activity, GFSE significantly reduced the tyrosinase activity and melanin content in a dose dependent manner, compared to control. GFSE also decreased the expression of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2), known as a melanocyte-specific gene product involved in melanin synthesis. Conclusions : Therefore, these results indicated that GFSE had powerful anti-inflammatory and anti-melanogenic effects.

Identification of bacteria isolated from rockworm viscera and application of isolated bacteria to shrimp aquaculture wastewater treatment

  • Ja Young Cho;Kyoung Sook Cho;Chang Hoon Kim;Joong Kyun Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.167-178
    • /
    • 2023
  • Large amounts of waste and wastewater from aquaculture have negatively impacted ecosystems. Among them, shrimp aquaculture wastewater contains large amounts of nitrogen contaminants derived from feed residues in an aerobic environment. This study isolated candidate strains from adult rockworms to treat shrimp aquaculture wastewater (SAW) in an aerobic environment. Among 87 strains isolated, 25 grew well at the same temperature as the shrimp aquaculture with excellent polymer degradation ability (>0.5 cm clear zone). Six isolates (strains AL1, AL4, AL5, AL6, LA10, and PR15) were finally selected after combining strains with excellent polymer degradation ability without antagonism. 16S rRNA sequencing analysis revealed that strains AL1, AL4, AL5, AL6, LA10, and PR15 were closely related to Bacillus paramycoides, Bacillus pumilus, Stenotrophomonas rhizophila, Bacillus paranthracis, Bacillus paranthracis, and Micrococcus luteus, respectively. When these six isolates were applied to SAW, they reached a maximum cell viability of 2.06×105 CFU mL-1. Their chemical oxygen demand (CODCr) and total nitrogen(TN) removal rates for 12h were 51.0% and 44.6%, respectively, when the CODCr/TN ratio was approximately 10.0. Considering these removal rates achieved in this study under batch conditions, these six isolates could be used for aerobic denitrification. Consequently, these six isolates from rockworms are good candidates that can be applied to the field of aquaculture wastewater treatment.