• 제목/요약/키워드: Bio-power

검색결과 683건 처리시간 0.024초

전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석 (Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector)

  • 김재곤;민영제;김목연;곽병섭;박현주
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

SiC 전력반도체의 병렬 구동 시 전류 불균형을 최소화하는 Mezzanine 구조의 방열일체형 스위칭 모듈 개발 (Development of Switching Power Module with Integrated Heat Sink and with Mezzanine Structure that Minimizes Current Imbalance of Parallel SiC Power Semiconductors)

  • 이정호;민성수;이기영;김래영
    • 전력전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.39-47
    • /
    • 2023
  • This paper applies a structural technique with uniform parallel switch characteristics in gates and power loops to minimize the ringing and current imbalance that occurs when a general discrete package (TO-247)-based power semiconductor device is operated in parallel. Also, this propose a heat sink integrated switching module with heat sink design flexibility and high power density. The developed heat dissipation-integrated switching module verifies the symmetry of the parasitic inductance of the parallel switch through Q3D by ansys and the validity of the structural technique of the parallel switch using the LLC resonant converter experiment operating at a rated capacity of 7.5 kW.

Chemical Composition and Antioxidant Activity of Algerian Juniperus Phoenicea Essential Oil

  • Harhour, Aicha;Brada, Moussa;Fauconnier, Marie-Laure;Lognay, Georges
    • Natural Product Sciences
    • /
    • 제24권2호
    • /
    • pp.125-131
    • /
    • 2018
  • Berries and branches essential oil of Juniperus phoenicea were obtained by electromagnetic induction heating assisted extraction and by hydrodistillation with a yield varied from ($1.2{\pm}0.3$ to $2.4{\pm}0.7%$) and from ($0.6{\pm}0.1%$ to $1.1{\pm}0.1%$), respectively. forty eight compounds were identified representing (97.2 - 99.7%) of the oil. ${\alpha}$-Pinene (40.3 - 67.8%) and ${\delta}$-3-carene (13.5 - 26.8%) were the main compounds in berries and branches essential oils. Antioxidant activity was evaluated by three means: inhibition of 2, 2-diphenyl-1-picryl hydrazyl (DPPH) free radical, reducing power and ${\beta}$-Carotene/linoleic acid bleaching. The antioxidant activity of essential oils showed $IC_{50}$ ranging from $67.6{\pm}1.02{\mu}g/mL$ to $131.5{\pm}0.8{\mu}g/mL$ for berries and from $98{\pm}1.25{\mu}g/mL$ to $166.8{\pm}0.29{\mu}g/mL$ for the branches. Berries oil show more potent antioxidant activity compared to branches. This result is supported by the three methods investigated in this work.

생체 신호 측정용 저 잡음 저 전력 용량성 계측 증폭기 (A Low Noise Low Power Capacitive Instrument Amplifier for Bio-Potential Detection)

  • 박창범;정준모;임신일
    • 센서학회지
    • /
    • 제26권5호
    • /
    • pp.342-347
    • /
    • 2017
  • We present a precision instrument amplifier (IA) designed for bio-potential acquisition. The proposed IA employs a capacitively coupled instrument amplifier (CCIA) structure to achieve a rail-to-rail input common-mode range and low gain error. A positive feedback loop is applied to boost the input impedance. Also, DC servo loop (DSL) with pseudo resistors is adopted to suppress electrode offset for bio-potential sensing. The proposed amplifier was designed in a $0.18{\mu}m$ CMOS technology with 1.8V supply voltage. Simulation results show the integrated noise of $1.276{\mu}Vrms$ in a frequency range from 0.01 Hz to 1 KHz, 65dB SNR, 118dB CMRR, and $58M{\Omega}$ input impedance respectively. The total current of IA is $38{\mu}A$. It occupies $740{\mu}m$ by $1300{\mu}m$ including the passive on-chip low pass filter.

바이오융합 및 의료기기 산업 (Bio-fusion and Medical Device Industry)

  • 박수아;이준희;김완두
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권1호
    • /
    • pp.23-52
    • /
    • 2017
  • 바이오융합 및 의료기기 산업은 의학과 전기, 전자, 기계, 재료 등 공학이 융합되는 다학제간 응용기술 산업분야이다. 바이오 융합 및 의료기기를 이용해 인간의 삶의 질 향상을 목표로 하고 있으며 제품에 대한 인지도와 브랜드 파워가 매우 중요한 산업이다. 그러나, 자본/기술 의존형 산업으로 제품의 개발부터 생산까지 소요되어지는 기간이 길고 개별 제품의 시장 규모가 작고 수명주기가 짧다고 할 수 있다. 따라서 연구개발에 대한 지속적인 투자가 요구되어지는 산업으로 국가적인 차원에서 바이오벤처 기업들을 위해 기술적 지원, 제도적 뒷받침, 인력 양성 등의 산업생태계 전반을 활성화하고자 하는 노력이 필요하다.

목질 열분해유의 디젤 엔진 적용성 연구 (Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine)

  • 이석환;박준혁;임기훈;최영;우세종;강건용
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

바이오매스 기반 전기에너지 생산기술 동향 분석 (Electrical Energy Production Using Biomass)

  • 이종서;한상수;김도연;김주현;박상진
    • 신재생에너지
    • /
    • 제19권1호
    • /
    • pp.12-21
    • /
    • 2023
  • Governments and global companies are working towards using renewable sources of energy, such as solar, wind, and biomass, to reduce dependency on fossil fuels. In the defense sector, the new strategy seeks to increase the sustainable use of renewable energy sources to improve energy security and reduce military transportation. Renewable energy technologies are affected by factors such as climate, resources, and policy environments. Therefore, governments and global companies need to carefully select the optimal renewable energy sources and deployment strategies. Biomass is a promising energy source owing to its high energy density and ease of collection and harvesting. Many techniques have been developed to convert the biomass into electrical energy. Recently, diverse types of fuel cells have been suggested that can directly convert the chemical energy of biomass into electrical energy. The recently developed biomass flow fuel cell has significantly enhanced the power density several hundred times, reaching to ~100 mW/cm2. In this review, we explore various strategies for producing electrical energy from biomass using modern methods, and discuss the challenges and potential prospects of this method.

발목, 무릎 근력과 균형의 상관관계 (The Correlations among the Balance the Knee and Ankle Muscle Power)

  • 정영준
    • 대한정형도수물리치료학회지
    • /
    • 제16권2호
    • /
    • pp.82-87
    • /
    • 2010
  • Purpose : This study was investigate The correlations between the Balance and the knee muscle power and the ankle muscle power. Methods : This studied selected 9cases of the healthy persons. Each measure of muscle power used Bio-dex pro-3. Balance measure was used balance-meter the ability to measure Ant-post, lateral, overall balance. Result : 1. Knee flexor and extensor causes ankles that plantar flexion strength and high correlation r= .745, r= .825 have, Ankle dorsi flexor strength and a bit of correlation r= .249, r= .221) have. 2. Ankle plantar flexor strength and overall balance and correlation was the r= .204, Ankle dorsi flexor strength and lat. balance and correlation was the r= .314. 3. Knee extensor strength and overall balance and correlation was the r=.212.

  • PDF

전력전송거리 증가를 위한 구형 자속 집중 송신부 구조의 설계 및 해석 (Spherical Flux Concentration Transmitter for Omnidirectional Wireless Power Transfer with Improved Power Transmission Distance)

  • 박광록;차화랑;김래영;김태진
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.181-187
    • /
    • 2020
  • In this study, we propose a spherical flux concentration structure for omnidirectional wireless power transfer. Omnidirectional wireless power transfer technology is a method that can transmit power to a transmitter located in an arbitrary position in a two-dimensional or three-dimensional space. However, to improve the power transfer distance in a wireless power transfer system, the diameter of the coil or the number of windings must increase, thereby increasing the size of the transmitter. The proposed transmitter structure adds a ferrite core inside the transmitter coil so that the magnetic flux generated by the transmitter is directed toward the position of the receiver. As a result, the flux linkage and the mutual inductance increase. By implementing the omnidirectional wireless power transfer system using the proposed structure, the power transfer distance can be improved by 65% compared with the conventional system without increasing the size of the transmitter. Simulation shows that the proposed spherical flux concentration structure increases the mutual inductance of the omnidirectional wireless power transmission system.