• 제목/요약/키워드: Bio-nano

검색결과 870건 처리시간 0.025초

Atomistic analysis of nano/micro biosensors

  • Chen, James;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • 제3권2호
    • /
    • pp.111-121
    • /
    • 2010
  • Dynamic analysis of nano/micro bio-sensors based on a multiscale atomistic/continuum theory is introduced. We use a generalized atomistic finite element method (GAFEM) to analyze a bio-sensor which has $3{\times}N_a{\times}N_p$ degrees of freedom, where $N_p$ is the number of representative unit cells and $N_a$ is the number of atoms per unit cell. The stiffness matrix is derived from interatomic potential between pairs of atoms. This work contains two studies: (1) the resonance analysis of nano bio-sensors with different amount of target analyte and (2) the dependence of resonance frequency on finite element mesh. We also examine the Courant-Friedrichs-Lewy (CFL) condition based on the highest resonance frequency. The CFL condition is the criterion for the time step used in the dynamic analysis by GAFEM. Our studies can be utilized to predict the performance of micro/nano bio-sensors from atomistic perspective.

Transmission Electron Microscope Sampling Method for Three-Dimensional Structure Analysis of Two-Dimensional Soft Materials

  • Lee, Sang-Gil;Lee, Ji-Hyun;Yoo, Seung Jo;Datta, Suvo Jit;Hwang, In-Chul;Yoon, Kyung-Byung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.203-207
    • /
    • 2015
  • Sample preparation is very important for crystal structure analysis of novel nanostructured materials in electron microscopy. Generally, a grid dispersion method has been used as transmission electron microscope (TEM) sampling method of nano-powder samples. However, it is difficult to obtain the cross-sectional information for the tabular-structured materials. In order to solve this problem, we have attempted a new sample preparation method using focused ion beam. Base on this approach, it was possible to successfully obtain the electron diffraction patterns and high-resolution TEM images of the cross-section of tabular structure. Finally, we were able to obtain three-dimensional crystallographic information of novel zeolite nano-crystal of the tabular morphology by applying the new sample preparation technique.

연료전지 응용을 위한 다공성막에 가교된 PVA/PSSA-MA/THS-PSA의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구 (Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA/THS-PSA for Fuel Cell Applications)

  • 김일형;김성표;이학민;박찬종;임지원;정성일
    • 멤브레인
    • /
    • 제21권3호
    • /
    • pp.299-305
    • /
    • 2011
  • 본 연구는 고내구성을 가진 고분자 전해질 막을 제조하는 것으로 연료전지에 적용하기 위하여 poly(vinyl alcohol)를 주쇄부로 하여 poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)와 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA)를 polyethylene막에 함침시켜 막을 제조하였다. 제조된 막을 함수율, 접촉각, FT-IR, 수소이온전도도, 탄성계수 등의 측정을 통해 친수성 고분자가 함침된 막의 특성평가를 실시하였다. FT-IR 분석과 접촉각 측정을 통해 PE막에 함친된 막에서 친수성기의 유무를 확인하였다. 수소이온전도도를 측정한 결과 30% THS-PSA의 막이 $55^{\circ}C$에서 $1.27{\times}10^{-1}S/cm$의 값을 나타내어 우수한 수소이온전도도를 나타내었으며, 탄성계수의 측정을 통해 polyethylene막에 비하여 THS-PSA가 함침된 막의 기계적 강도가 15%까지는 최대 7배까지 향상되어 막의 내구성이 향상되었음을 확인하였다.

바이오센서 (Biosensors: a review)

  • 황교선;김상경;김태송
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.251-262
    • /
    • 2009
  • Biosensors exploit the specific binding between recognition molecule on the biosensor surface and target molecule in analyte and are used in the detection of specific biomolecules such as protein, DNA, cell, virus, etc., with a view towards developing analytical devices. Recently, application field of biosensors have been expanding from diagnosis to biodefense because they can basically serve as high performance devices. This review describes the basic information of biosensors including definition, classification, and operational principle. Moreover, we introduce micro/nano technology-based biosensors with better detection performance than traditional method and their application examples.