• Title/Summary/Keyword: Bio-nano

Search Result 870, Processing Time 0.023 seconds

Research Trend of Biochip Sensors for Biomarkers Specific to Diagnostics of Lung Cancer Diseases (폐암 질환 진단에 활용 가능한 바이오마커 검출용 바이오칩 센서 연구 동향)

  • Lee, Sang Hyuk;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.645-651
    • /
    • 2018
  • Lung cancer has the highest death rate of any cancer diseases in Koreans. However, patients often feel difficult to recognize their disease before facing the terminal diagnosis due to the absence of any significant symptoms. Furthermore, the clear detection of an early cancer stage is usually obscure with existing diagnostic methods. For this reason, extensive research efforts have been made on introducing a wide range of biochemical diagnostic tools for the molecular level analysis of biological fluids for lung cancer diagnoses. A chip-based biosensor, one type of the analytical devices, can be a great potential for the diagnosis, which can be used without any further expensive analytical equipments nor skilled analysts. In this mini review, we highlight recent research trends on searching biomarker candidates and bio-chip sensors for lung cancer diagnosis in addition to discussing their future aspects.

Basic study on high gradient magnetic separation of nano beads using superconducting magnet for antibody purification

  • Jeongtae Kim;Insung Park;Gwantae Kim;Myunghwan Sohn;Sanghoon Lee;Arim Byun;Jin-sil Choi;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.60-64
    • /
    • 2023
  • The manufacturing process of antibody drugs comprises two main stages: the upstream process for antibody cultivation and the downstream process for antibody extraction. The domestic bio industry has excellent technology for the upstream process. However, it relies on the technology of foreign countries to execute downstream process such as affinity chromatography. Furthermore, there are no domestic companies capable of producing the equipment for affinity chromatography. High gradient magnetic separation technology using a high temperature superconducting magnet as a novel antibody separation and purification technology is introduced to substitute for the traditional technology of affinity chromatography. A specially designed magnetic filter was equipped in the bore of the superconducting magnet enabling the continuous magnetic separation of nano-sized paramagnetic beads that can be used as affinity magnetic nano beads for antibodies. To optimize the magnetic filter that captures superparamagnetic nanoparticles effectively, various shapes and materials were examined for the magnetic filter. The result of magnetic separation experiments show that the maximum separation and recovery ratio of superparamagnetic nanoparticles are 99.2 %, and 99.07 %, respectively under magnetic field (3 T) and flow rate (600 litter/hr).

Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells (HCT116 대장암세포에서 AKT/mTOR/GSK-3β 신호경로 조절을 통한 벌 사상자 추출물(CME)의 apoptosis 및 cell cycle arrest 효과)

  • Lim, Eun Gyeong;Kim, Guen Tae;Kim, Bo Min;Kim, Eun Ji;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.663-672
    • /
    • 2016
  • The Cnidium monnieri (L.) Cusson is an annual plant distributed in China and Korea. The fruit of C. monnieri is used as a medicinal herb that is effective for the treatment of carbuncle and pain in female genitalia. However, the anti-cancer effects of CME have not yet been reported. In this study, we assessed the apoptotic effects and cell cycle arrest effects of ethanol extracts from C. monnieri on HCT116 colon cancer cells. The results of an MTT assay and LDH assay demonstrated a decrease in cell viability and the cytotoxic effects of CME. In addition, the number of apoptotic body and the apoptotic rate were increased in a dose-dependent manner through Hoechst 33342 staining and Annexin V-PI double staining. In addition, cell cycle arrest occurred at the G1 phase by CME. Protein kinase B (Akt) plays an important role in cancer cell survival, growth, and division. Akt down-regulates apoptosis-mediated proteins, such as mammalian target of rapamycin (mTOR), p53, and Glycogen Synthase kinase-3β (GSK-3β). CME could regulate the expression levels of p-Akt, p-mTOR, p-GSK-3β, Bcl-2 family members, caspase-3, and PARP. Furthermore, treatment with CME, LY294002 (PI3K/Akt inhibitor), BIO (GSK-3β inhibitor), and Rapamycin (mTOR inhibitor) showed that apoptotic effects occurred through the regulation of the AKT/mTOR/GSK-3β signaling pathway. Our results demonstrated CME could induce apoptosis and cell cycle arrest in HCT116 colon cancer cells.

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 2. Exhaust and Non-regulated, PM emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 2. 배출가스 및 미규제 물질, 입자상 물질 특성)

  • Lee, Min-Ho;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.374-384
    • /
    • 2016
  • Concern about air pollution is gradually rising up in domestic and foreign, automotive and fuel researchers are trying to reduce vehicle exhaust emissions, through a lot of approaches, which consist of new engine design and innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research is proceeding by two main issues : exhaust emissions and PM particle emissions of gasoline vehicle. Exhaust emissions, non-regulated emissions and PM (particulate matter) particles of automotive are causing many problems which ambient pollution and harmful effects on the human body. The main particulate fraction of automotive exhaust emissions consists of small particles. Because of their small size, inhaled particles can easily penetrate deep into the lungs. The rough surfaces of these particles make it easier for them to combine with other toxins in the environment. Thus, the hazards of particle inhalation are increased. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline vehicle exhaust emissions, non-regulated emissions and nano-particle emissions. Also, this paper assessed exhaust emission characteristics at 2 type test modes. The test modes were FTP-75 and HWFET. All measurement items be verified less than the value of regulated emissions. It could be known difference increase and decrease by each measurement item depending on increase the oxygen contents.

The Surface Treatment Effect for Nanoimprint Lithography using Vapor Deposition of Silane Coupling Agent (나노임프린트 공정에서 실란커플링제 기상증착을 이용한 표면처리 효과)

  • Lee, Dong-Il;kim, Ki-Don;Jeong, Jun-Ho;Lee, Eung-Sug;Choi, Dae-Geun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Nanoimprint lithography (NIL) is useful technique because of its low cost and high throughput capability for the fabrication of sub-micrometer patterns which has potential applications in micro-optics, magnetic memory devices, bio sensors, and photonic crystals. Usually, a chemical surface treatment of the stamp is needed to ensure a clean release after imprinting and to protect the expensive original master against contamination. Meanwhile, adhesion promoter between resin and substrate is also important in the nanoscale pattern. In this work, we have investigated the effect of surface treatment using silane coupling agent as release layer and adhesion promoter for UV-Nanoimprint lithography. Uniform SAM (self-assembled monolayer) could be fabricated by vapor deposition method. Vapor phase process eliminates the use of organic solvents and greatly simplifies the handling of the sample. It was also proven that 3-acryloxypropyl methyl dichlorosilane (APMDS) could strongly improve the adhesion force between resin and substrate compared with common planarization layer such as DUV-30J or oxygen plasma treatment.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.

Characterization of Interfacial Adhesion of Cu-Cu Bonding Fabricated by Thermo-Compression Bonding Process (열가압 접합 공정으로 제조된 Cu-Cu 접합의 계면 접합 특성 평가)

  • Kim, Kwang-Seop;Lee, Hee-Jung;Kim, Hee-Yeoun;Kim, Jae-Hyun;Hyun, Seung-Min;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.929-933
    • /
    • 2010
  • Four-point bending tests were performed to investigate the interfacial adhesion of Cu-Cu bonding fabricated by thermo-compression process for three dimensional packaging. A pair of Cu-coated Si wafers was bonded under a pressure of 15 kN at $350^{\circ}C$ for 1 h, followed by post annealing at $350^{\circ}C$ for 1 h. The bonded wafers were diced into $30\;mm\;{\times}\;3\;mm$ pieces for the test. Each specimen had a $400-{\mu}m$-deep notch along the center. An optical inspection module was installed in the testing apparatus to observe crack initiation at the notch and crack propagation over the weak interface. The tests were performed under a fixed loading speed, and the corresponding load was measured. The measured interfacial adhesion energy of the Cu-to-Cu bonding was $9.75\;J/m^2$, and the delaminated interfaces were analyzed after the test. The surface analysis shows that the delamination occurred in the interface between $SiO_2$ and Ti.

Distribution of poly-${\gamma}$-glutamate (${\gamma}$-PGA) producers in Korean fermented foods, Cheongkukjang, Doenjang, and Kochujang

  • Kang, Seong-Eun;Rhee, Joo-Hyung;Park, Chung;Sung, Moon-Hee;Lee, In-Hyung
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.704-708
    • /
    • 2005
  • Poly-y-glutamate (${\gamma}$-PGA) has great potential as a biodegradable polymer in a broad range of industrial fields such as food, cosmetics, medicine and water treatment. In order to isolate ${\gamma}$-PGA producers that are suitable for specific industrial applications, 653 Bacillus-like strains were isolated from 439 varieties of three Korean fermented foods, Cheongkukjang, Doenjang, and Kochujang, which were collected from different regions across Korea. A very high level of ${\gamma}$-PGA production was demonstrated in 4.7%, 1.8%, and 3.0% of the Bacillus-like strains isolated from Cheongkukjang, Doenjang, and Kochujang samples, respectively, which produced a viscous substance to such extent that it overflowed to the lid of the plate on the glutamate-dependent ${\gamma}$-PGA production plates. On glutamate-independent ${\gamma}$-PGA production plates, 5.1%, 5.9%, and 6.1% of Bacillus-like strains isolated from Cheongkukjang, Doenjang, and Kochujang samples, respectively, showed high production. The maximum ${\gamma}$-PGA production yields were 32.5 g/L and 5 g/L, depending on the purification methods in the glutamate-dependent media, with the higher yield resulting from a simple precipitation of ${\gamma}$-PGA by either methanol or ethanol and dialysis. The viscous substance produced by each strain showed different morphological characteristics, suggesting that isolated ${\gamma}$-PGA producers could produce various types of ${\gamma}$-PGA.

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.