• 제목/요약/키워드: Bio-materials

검색결과 2,392건 처리시간 0.026초

바이오에탄올 연료에 대한 FFV(Flexible Fuel Vehicle)용 연료펌프모터의 내구성에 관한 연구 (A Study of Fuel Pump Durability on the Bio-ethanol for FFV(Flexible Fuel Vehicle) System)

  • 김창수;곽동호;정병준;김종명
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.107-112
    • /
    • 2011
  • FFV(Flexible Fuel Vehicle) is the vehicle that can be used liberally from gasoline to E100(Ethanol 100%) for fuel. Recently, interest in the bio-fuel is increased by the environmental factors like exhaustion of the fossil fuel and ruduction of greenhouse gases. For the reason, adopting of FFV is activated in the world including North and South America. In general, bio-ethanol has highly corrosive substance in compare with gasoline. In the part of fuel system, corrosion can make a safety problem in case of fuel leakage and engine starting problem. So the fuel system of FFV have to be made of high corrosion-resistant materials. This study examined the effect of bio-ethanol on the durability properties according to component materials in FFV fuel pump motor and regulator using the High Temperature Fuel Circulation Test.

Substrate-free Biosensing using Brownian Rotation of Bio-conjugated Magnetic Nanoparticles

  • Chung Seok-Hwan;Hoffmann Axel;Chen, Liaohai;Sun, Shouheng;Guslienko Konstantin;Grimsditch Marcos;Bader Samuel D.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.189-194
    • /
    • 2006
  • The recent development of bio-conjugated magnetic nanoparticles offers many opportunities for applications in the field of biomedicine. In particular, the use of magnetic nanoparticles for biosensing has generated widespread research efforts following the progress of various magnetic field sensors. Here we demonstrate substrate-free biosensing approaches based on the Brownian rotation of ferromagnetic nanoparticles suspended in liquids. The signal transduction is through the measurement of the magnetic ac susceptibility as a function of frequency, whose peak position changes due to the modification of the hydrodynamic radius of bio-conjugated magnetic nanoparticles upon binding to target bio-molecules. The advantage of this approach includes its relative simplicity and integrity compared to methods that use substrate-based stray-field detectors.

Bio-Nanotechnology Challenges for Intelligent Materials

  • Aizawa, Masuo
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.78-79
    • /
    • 2006
  • Bio-nanotechnology challenges have been emerging in development of molecular and cellular intelligent bio-materials, engineered cells for enhancing intelligence, biodevices for diagnosis and prevention, and biodevices for therapeutics and prevention. The perspectives of bionanotechnology challenges are overviewed.

  • PDF

Bio-based Polypropylene Composites: Plausible Sustainable Alternative to Plastics in Automotive Applications

  • Ji Won Kwon;Sarbaranjan Paria;In Soo Han;Hyeok Jee;Sung Hwa Park;Sang Hwan Choi;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제59권2호
    • /
    • pp.51-63
    • /
    • 2024
  • Polypropylene (PP) is a commodity plastic that is widely used owing to its cost-effectiveness, lightweight nature, easy processability, and outstanding chemical and thermomechanical characteristics. However, the imperative to address energy and environmental crises has spurred global initiatives toward a circular economy, necessitating sustainable alternatives to traditional fossil-fuel-derived plastics. In this study, we conducted a series of comparative investigations of bio-based polypropylene (bio-PP) blends with current PP of the same and different grades. An extrusion-based processing methodology was employed for the bio-PP composites. Talc was used as an active filler for the preparation of the composites. A comparative analysis with the current petroleum-based PP indicated that the thermal properties and tensile characteristics of the bio-PP blends and composites remained largely unaltered, signifying the feasibility of bio-PP as a potential substitute for the current PP. To achieve a higher Young's modulus, elongation at break (EAB), and melt flow index (MFI), we prepared different composites of PP of different grades and bio-PP with varying talc contents. Interestingly, at higher biomass contents, the composites exhibited higher MFI and EAB values with comparable Young's moduli. Notably, the impact strengths of the composites with various biomass and talc contents remained unaltered. In-depth investigations through surface analysis confirmed the uniform dispersion of talc within the composite matrix. Furthermore, the moldability of the bio-PP composites was substantiated by comprehensive rheological property assessments encompassing shear rate and shear viscosity. Thus, from these outcomes, the fabricated bio-PP-based composites could be an alternative to petroleum-based PP composites for sustainable automobile applications.

Bio-MEMS분야의 최근 연구동향 (Recent research trends on Bio-MEMS)

  • 박세광;양주란
    • 센서학회지
    • /
    • 제19권4호
    • /
    • pp.259-270
    • /
    • 2010
  • MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

A Cyan Fluorescent Protein Gene (cfp)-Transgenic Marine Medaka Oryzias dancena with Potential Ornamental Applications

  • Vu, Nguyen Thanh;Cho, Young Sun;Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제17권4호
    • /
    • pp.479-486
    • /
    • 2014
  • To evaluate their potential utility as an ornamental organism, novel transgenic marine medaka Oryzias dancena strains with a highly vivid fluorescent phenotype were established through transgenesis of a cyan fluorescent protein gene (cfp) driven by the endogenous fast skeletal myosin light chain 2 gene (mlc2f) promoter. The transgenic marine medaka strains possessed multiple copies of transgene integrants and passed their fluorescent transgenes successfully to subsequent generations. Transgenic expression in skeletal muscles at both the mRNA and phenotypic levels was, overall, dependent upon transgene copy numbers. In the external phenotype, an authentic fluorescent color was dominant in the skeletal muscles of the transgenic fish and clearly visible to the unaided eye. The phenotypic fluorescent color presented differentially in response to different light-irradiation sources; the transgenics displayed a yellow-green color under normal daylight or white room light conditions, a strong green-glowing fluorescence under ultraviolet light, and a cyan-like fluorescence under blue light from a light-emitting diode.

Tailoring Porosity of Colloidal Boehmite Sol by Controlling Crystallite Size

  • Park, Myung-Chul;Lee, Sung-Reol;Kim, Hark;Park, In;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1962-1966
    • /
    • 2012
  • Boehmite sols have been prepared by crystallization of amorphous aluminum hydroxide gel obtained by hydrolysis and peptization of aluminum using acetic acid. The size of the boehmite crystallites could be controlled by Al molar concentration in amorphous gel by means of controlling grain growth at nucleation stage. The size of boehmite increases as a function of Al molar concentration. With increasing boehmite crystallite size, the $d_{(020)}$ spacing and the specific surface area decreases, whereas the pore volume increases along with pore size. Especially, the pore size of the boehmite sol particles is comparable to the crystallite size along the b axis, suggesting that the fibril thickness along the b axis among the crystallite dimensions of the boehmite contributes to the pore size. Therefore, the physical properties of boehmite sols can be determined by the crystallite size controlled as a function of initial Al concentration.