• Title/Summary/Keyword: Bio-mass

Search Result 657, Processing Time 0.021 seconds

The Dynamical Models of the Life Action on the Assimilation and Dissimilation in the Ecosystem (생태계에 있어서 동화.이화작용에 관한 동력학적 모델)

  • 장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.4
    • /
    • pp.331-339
    • /
    • 1996
  • The mass action on the assimilation and dissimilation of a living system from bio-molecules to bio-spheres has been demonstrated by the theoretical models as the bio- and trophic-functions From the viewpoint of this bio-mechanics, the general principle on the pre-equilibrium of the bio-molecular system is found. Key words: Mass action, Living system, Bio-molecule, Bio-sphere, Bio- and trophic function.

  • PDF

Petroleomic Characterization of Bio-Oil Aging using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

  • Smith, Erica A.;Thompson, Christopher;Lee, Young Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.811-814
    • /
    • 2014
  • Bio-oil instability, or aging, is a significant problem for the long-term storage of fast pyrolysis oils. We investigated bio-oil aging at the molecular level using Fourier-transform ion cyclotron resonance mass spectrometry. Petroleomic analysis suggests that bio-oil aging is resulted from the oligomerization of phenolic lignin products whereas 'sugaric' cellulose/hemicellulose products have negligible effect.

Organic matrix-free imaging mass spectrometry

  • Kim, Eunjin;Kim, Jisu;Choi, Inseong;Lee, Jeongwook;Yeo, Woon-Seok
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.349-356
    • /
    • 2020
  • Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.

EFFECTS OF INTERCROPPING, SEEDLING RATE AND FERTILIZER ON FODDER PRODUCTION IN THE LOW LYING AREA OF BANGLADESH

  • Sarker, N.R.;Giasuddin, M.;Islam, M.M.;Rahman, M.M.;Yasmin, L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 1994
  • The study was conducted at low lying areas in Pabna Sirajgong districts of Bangladesh. To observe the potentiality of bio-mass production two trials were conducted. In first trial maize intercropped with Khesari taking 15 experimental plots of each size $5m{\times}5m$ were arranged in 5 blocks having homogenous soil characteristics. The study showed that the bio-mass yield of sole maize and sole Khesari were 35.25 t/ha. and 56.80 t/ha. respectively and there was a significant difference (p < 0.01) among them. The results also showed that bio-mass yield of maize and Kherasi was higher ($70.04{\pm}6.25t/ha$, $98.88{\pm}10.77t/ha$ and $80.56{\pm}9.5t/ha$) compared to sole maize and sole Khesari and land equivalent ratio was also lower. For second trial, one hectare of land was divided into 16 experimental plots with 4 replications in each plot. Four levels of urea (0 kg/ha, 30 kg/ha, 45 kg/ha, and 60 kg/ha.) were applied to experimental plot. The seed rates were 98.8 kg/ha (farmer's practice), 86.45 kg/ha, 74.1 kg/ha and 61.75 kg/ha. average bio-mass yield of matikalai at different seed rates along with urea fertilizer ranged from 38.49 t/ha, to 65.35 t/ha. the highest seed rate along with highest fertilizer also correspond to the peak production (65.35 t/ha) and the lowest seed rate (61.75 kg/ha) along with the lowest fertilizer rate (30 kg/ha.) showed lowest production (38.49 t/ha.). Here, it was found that the bio-mass yield of matikalai increased with the incremental amount of seed, indicating significant effect (p < 0.05) of seed rates on the bio-mass yield of matikalai. On the other hand, fertilizer doses in different treatment combinations had significant effect (p < 0.05) on bio-mass yield. Two levels of seed rates at zero level of fertilizer were recommended : 86.45 kg/ha for the resource rich farmers and 61.75 kg/ha for the resource poor farmers.

Informatics for protein identification by tandem mass spectrometry; Focused on two most-widely applied algorithms, Mascot and SEQUEST

  • Sohn, Chang-Ho;Jung, Jin-Woo;Kang, Gum-Yong;Kim, Kwang-Pyo
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Mass spectrometry (MS) is widely applied for high throughput proteomics analysis. When large-scale proteome analysis experiments are performed, it generates massive amount of data. To search these proteomics data against protein databases, fully automated database search algorithms, such as Mascot and SEQUEST are routinely employed. At present, it is critical to reduce false positives and false negatives during such analysis. In this review we have focused on aspects of automated protein identification using tandem mass spectrometry (MS/MS) spectra and validation of the protein identifications of two most common automated protein identification algorithms Mascot and SEQUEST.

  • PDF

A High-Lateral Resolution MALDI Microprobe Imaging Mass Spectrometer Utilizing an Aspherical Singlet Lens

  • Han, Sang Yun;Kim, Hwan Jin;Ha, Tae Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.207-210
    • /
    • 2013
  • We report the construction of a MALDI imaging mass spectrometer equipped with a specially designed laser focusing lens, a compact aspherical singlet lens, that obtains a high-lateral imaging resolution in the microprobe mode. The lens is specially designed to focus the ionization laser (${\lambda}$ = 355 nm) down to a $1{\mu}m$ diameter with a long working distance of 34.5 mm. With the lens being perpendicular to the sample surface and sharing the optical axis with the ion path, the imaging mass spectrometer achieved an imaging resolution of as good as $5{\mu}m$ along with a high detection sensitivity of 100 fmol for peptides. The mass resolution was about 900 (m/${\Delta}m$) in the linear TOF mode. The high-resolution capability of this instrument will provide a new research opportunity for label-free imaging studies of various samples including tissues and biochips, even for the study at a single cell level in the future.