• Title/Summary/Keyword: Bio-ion water

Search Result 61, Processing Time 0.025 seconds

Analysis of Water Balance in Closed Transplants Production System (폐쇄형 묘생산 시스템의 수분 수지 분석)

  • Kim, J.K.;Kim, Y.H.;Choi, Y.H.;Lee, M.G.
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.152-159
    • /
    • 2003
  • This study was conducted to analyze the water consumption in closed transplants production system (CTPS) for the production of quality transplants and to investigate the effect of relative humidity on the water balance in CTPS. Potato (Solanum tuberosum L. cv. Dejima) plug seedlings were grown for 15 days at air temperature of 20$^{\circ}C$, relative humidity of 70%, photoperiod of 16/8 h, and photosynthetic photon flux (PPF) of 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-l}$ following rooting for 5 days in CTPS. Amount of humidified, dehumidified, irrigated and evapotranspirated water were 67.9 kg${\cdot}m^{-2},\;196.9{\cdot}m^{-2},\;44.3\;kg{\cdot}m^{-2},\;33.5\;kg{\cdot}m^{-2}$, respectively. Water content of media and plants were 1.2 kg${\cdot}m^{-2},\;6.9\;kg{\cdot}m^{-2}$, respectively. Three relative humidity levels of 60, 70, and 80% were provided to analyze the effect of humidity on the water balance in CTPS. Amount of humidified, dehumidified, irrigated, evapotranspiratad water and water contents of media and plants increased with increasing relative humidity. Since the water consumption required to produce plug seedlings in CTPS dec1eased with decreasing relative humidity, the available water utilization efficiency of CTPS increased with decreasing relative humidity. CTPS showed high available water utilization efficiency of 0.92 - 0.97 if dehumidified water in CTPS was recycled. The development of CTPS with recycling system of dehumidified water will not only reduce the water consuming for the production of transplants but contribute to the establishment of plant production economizing in water consumption.

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media (영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가)

  • Joo, Wan-Ho;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.

Effects of Quality Characteristics and Antioxidant Activity of Korean Cultivated Wild Ginseng Extract (산양삼의 품질특성 및 항산화 활성에 미치는 영향)

  • Kang, Kyoung-Myoung;Lee, Jin-Young;Kim, Myung-Uk;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1740-1746
    • /
    • 2016
  • In this study, we investigated the nutritional and functional constituents as well as quality characteristics and antioxidant activity of Korean cultivated wild ginseng (KG). The chemical compositions and amino acid content of KG were 7.56% water, 73.01% carbohydrates, 12.58% protein, 1.99% lipids, and 5.54% ash as well as 16.17 mg/g of amino acids, respectively. The major ginsenoside and minor ginsenoside contents of KG were 15.94 mg/g and 0.04 mg/g, respectively. The total polyphenol and flavonoid contents of KGE (Korean cultivated wild ginseng with 70% ethanol extract) were 8.93 mg GAE/g and 3.96 mg RHE/g, respectively. KGE also showed higher antioxidant activity than the other extracts (KGW, Korean cultivated wild ginseng with water extract) with regard to DPPH and ABTS radical scavenging activities (57.75% and 70.73%, respectively), nitrite oxide scavenging activity (44.01%), SOD-like activity (78.05%), reducing power activity ($1.08OD_{700nm}$), and ferrous ion-chelating activity (65.33%). Additionally, KGE had higher elastase, collagenase, and tyrosinase inhibition activities than KGW. These results suggest that KGE can be used as a bioactive and functional material in the food industry.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

Effect of Irrigation volume on Ions Content in Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate (코이어 배지 이용 토마토 장기 수경재배시 급액량이 근권부 무기이온에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kim, Seung Yu;Lee, Seong Chan;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Also, t-cincreaseisdecreasein order In hydroponics, the accumulation of inorganic ions in the root zone are closely related to the irrigation volume. Therefore, the effects of irrigation volume on the growth and yield of tomatoes are very signigicant. This study was conducted to investigate the effect of irrigation volume on inorganic ions of root zone in hydroponic culture using coir substrate. The irrigation volume was adjusted to 4 levels depending on the integrated solar radiation for each growth period. The drainage ratio was calculated by daily amount of irrigation and drainage. The higher irrigation volume is, drainage ratio and water absorption tended to increase. But, the water absorption in the treatment of high irrigation volume was decreased in February and March compared to the treatment of medium high irrigation volume. By calculating monthly average irrigation volume and the drainage ratio, 120 to 1$40J/cm^2$ in January, 100 to $120J/cm^2$ in February, 80 to $100J/cm^2$ in March, 70 to $90J/cm^2$ in April and 60 to $75J/cm^2$ in May was detected as appropriate irrigation volume ranges which drainage ratio was 20-30%. The higher irrigation volume, the lower the concentration of ions decrease, which could prevent the accumulation of nutrients in the root zone. However, due to the characteristics of the coir substrate that absorbs ions, concentration of ions was significantly high when the drainage ratio was 20-30%. However, concentrations of P and K were sometimes lower in the drainage than that of irrigation water regardless of the treatment. Mg and S were the most highly accumulated ions even in the treatment of high irrigation volume. In low radiation season, there was no difference in the ion concentration in the drainage depending on the irrigation volume. In high radiation season, the lower irrigation volume, resulted to the higher ion concentration in the drainage. After March, it was difficult to prevent the increase of ions concetration in the drainage by only adjusting irrigation volume. Thus, it is necessary to decrease the EC of irrigation solution to prevent the accumulation of nutrients in the root zone.

A Study on Physicochemical Properties of Achyranthes japonica and Smilax china Extracts (쇠무릎과 청미래덩굴 부위별 추출물의 이화학적 특성에 관한 연구)

  • Jeong, Kap-Seop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3317-3326
    • /
    • 2011
  • Physicochemical properties of Achyranthes japonica and Smilax china extracts were investigated for the purpose of functionality research on the natural bio-resources. Extraction contents were order of distilled water>methanol>ethanol solvent, the highest free aminoacids were proline from Achyranthes japonica, phosphoserine and glutamic acid from Smilax china, respectively. BI and TAC by spectrophotometric absorbance were order of methanol>ethanol>water in Smilax china leaf extract, but water>methaol>ethanol in Achyranthes japonica leaf extract. EDA was high in ethanol extract from Smilax china leaf and in methanol extract from Smilax china root, and in water extract from Achyranthes japonica. TBA value of Achyranthes japonica leaf and Smilax china leaf-ethanol extracts on olive oil was 82.1% and 84.0%, respectively, for that of an artificial antioxidant BHT. Antimicrobial effect was observed in Achyranthes japonica stem-methanol extract on Bacillus subtillis, in Smilax china leaf-ethanol extract on Bacillus subtillis, Vibrio vulnificus and Salmonella enterica, respectively. And the adsorption of Pb(II) on Achyranthes japonica was higher than that of Cd(II) on Smilax china under the same metal ion concentration.

Quality Characteristics and Antioxidative Activities of Guavapyun Added Korean Guava Fruit Extract (한국산 구아바 열매 추출물을 첨가한 구아바편의 품질특성 및 항산화활성)

  • Kim, Min-Ju;Choi, Hae-Yeon;Kim, Sun-Im
    • Korean journal of food and cookery science
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2010
  • This study was conducted to investigate the quality characteristics of guavapyun after the addition of different ratios of extract (0.25, 0.5, 0.75, 1.0%), non-extract and vitamin C. The quality if the pyun containing 0.5% of the guava fruit extract (guavapyun) and vitamin C was higher compared with the quality of the control pyun. In the results of the proximatecomposition, the content of water was high in the control pyun relative to the vitamin C pyun and guavapyun and the carbohydrate, ash, crude lipid and protein content was high in guavapyun. The sweetness, pH and color (L, a, b value) were very high in the samples. The texture, hardness, chewiness and gumminess were significantly high in the control pyun and the adhesiveness and cohesiveness were high in guavapyun. However, there were no significant differences in springiness between the control and the added samples. The total phenolic content was higher in guavapyun (23.57 mg GAE/100 g) than the control pyun (18 mg GAE/100 g) and vitamin C pyun(15.05 mg GAE/100 g). The antioxidant activities determined by the DPPH method and ABTS method was higher in guavapyun (41.37 mM TE/g, 15.35 mM TE/g) than the control pyun (4.43 mM TE/g, 2.17mM TE/g) and vitamin C pyun (11.33 mM TE/g, 4.51 mM TE/g). Using the FRAP method, guavapyun(9.06 mM TE/g) was shown to exhibit a stronger ferrous ion chelating activity than the control pyun (4.49mM TE/g) and vitamin C pyun (7.03 mM TE/g). Thus, the studied indigenous guavapyun was high in both antioxidative activity and total phenolic content.

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.

Phytochemical-based Tannic Acid Derivatives as Draw Solutes for Forward Osmosis Process (정삼투 공정의 유도용질로서의 식물 화학물질 기반의 탄닌산 유도체)

  • Kim, Taehyung;Ju, Changha;Kang, Hyo
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.157-168
    • /
    • 2018
  • Potassium tannate (TA-K), which is prepared by base treatment of the bio-renewable tannic acid (TA), was evaluated for its potential application as a draw solute for water purification by forward osmosis. The forward osmosis and recovery properties of TA-K were systematically investigated. In the application of forward osmosis through the active layer facing feed solution (AL-FS) method, the water flux of TA-K draw solution was significantly higher than that of the TA draw solution, while that of the latter was not identified. At a low concentration of 100 mM, the osmotic pressure (1,135 mOsmol/kg) of the TA-K draw solution was approximately 6.5 times that (173 mOsmol/kg) of the NaCl draw solution. Furthermore, the water flux and specific salt flux (6.14 LMH, 1.26 g/L) of the TA-K draw solution at 100 mM were approximately 2.5 and 0.5 times those of the NaCl draw solution (2.46 LMH, 2.63 g/L) at the same concentration, respectively. For reuse, TA-K was precipitated by using a metal ion and recovered through membrane filtration. This study demonstrates the applicability of a phytochemical material as a draw solute for forward osmosis.

Purified Polysaccharide Activating the Complement System from Leaves of Diospyos kaki L. (감잎(Diospyos kaki L.)으로부터 정제한 보체계 활성화 다당류)

  • Jung, Yung-Joo;Chun, Hyug;Kim, Kyung-Im;An, Jeung-Hee;Shin, Dong-Hoon;Hong, Bum-Shik;Cho, Hong-Yon;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.879-884
    • /
    • 2002
  • Cold and hot water fractions of Diospyros kaki were screened to determine its anti-complementary activity. Flour of Diospyros kaki leaf (250 g) was boiled at $100^{\circ}C$ for 3 h and passed through a membrane of 10 kDa molecular weight (DK-0). DK-0 was precipitated with ethanol and refluxed with methanol to obtain the crude polysaccharide (DKC). DKC-1 was isolated by ion exchange chromatography on DEAE-Toyopearl 650C, and DKC-1c was purified from DKC-1 by size exclusion chromatography on Bio gel P-60. The anti-complementary activities of DKC-1c at $1000\;{\mu}g/mL$ were 85.4 and 61.1% via whole and alternative pathways, respectively. DKC-1c was determined as a neutral polysaccharide composed of glucose (29.0 mol.%), arabinose (24.3 mol.%), and galactose (16.2 mol.%) with the molecular weight of 66.6 kDa. Results of agarose gel immunoelectrophoresis revealed DKC-1c, as a complement activator, cleaved C3 into C3a and C3b via both pathways.