• Title/Summary/Keyword: Bio-inspired Design

Search Result 40, Processing Time 0.02 seconds

DNA Inspired CVD Diagnostic Hardware Architecture (DNA 특성을 모방한 심혈관질환 진단용 하드웨어)

  • Kwon, Oh-Hyuk;Kim, Joo-Kyung;Ha, Jung-Woo;Park, Jea-Hyun;Chung, Duck-Jin;Lee, Chong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.320-326
    • /
    • 2008
  • In this paper, we propose a new algorithm emulating the DNA characteristics for noise-tolerant pattern matching problem on digital system. The digital pattern matching becomes core technology in various fields, such as, robot vision, remote sensing, character recognition, and medical diagnosis in particular. As the properties of natural DNA strands allow hybridization with a certain portion of incompatible base pairs, DNA-inspired data structure and computation technique can be adopted to bio-signal pattern classification problems which often contain imprecise data patterns. The key feature of noise-tolerance of DNA computing comes from control of reaction temperature. Our hardware system mimics such property to diagnose cardiovascular disease and results superior classification performance over existing supervised learning pattern matching algorithms. The hardware design employing parallel architecture is also very efficient in time and area.

Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis (기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발)

  • Geon Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

CrabBot: A Milli-Scale Crab-Inspired Crawling Robot using Double Four-bar Mechanism (CrabBot: 이중 4절 링크를 활용한 꽃게 모사 8족 주행 로봇)

  • Cha, Eun-Yeop;Jung, Sun-Pil;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2019
  • Milli-scale crawling robots have been widely studied due to their maneuverability in confined spaces. For successful crawling, the crawling robots basically required to fulfill alternating gait with elliptical foot trajectory. The alternating gait with elliptical foot trajectory normally generates both forward and upward motion. The upward motion makes the aerial phase and during the aerial phase, the forward motion enables the crawling robots to proceed. This simultaneous forward and upward motion finally results in fast crawling speed. In this paper, we propose a novel alternating mechanism to make a crab-inspired eight-legged crawling robot. The key design strategy is an alternating mechanism based on double four-bar linkages. Crab-like robots normally employs gear-chain drive to make the opposite phase between neighboring legs. To use the gear-chain drive to this milli-scale robot system, however, is not easy because of heavy weight and mechanism complexity. To solve the issue, the double-four bar linkages has been invented to generate the oaring motion for transmitting the equal motion in the opposite phase. Thanks to the proposed mechanism, the robot crawls just like the real crab with the crawling speed of 0.57 m/s.

Modular Crawler with Adjustable Number of Legs and Performance Evaluation of Hexapod Robot (다리 수 조절이 가능한 모듈러 크롤러의 설계 및 6족 로봇의 주행 성능 평가)

  • Yim, Sojung;Baek, Sang-Min;Lee, Jongeun;Chae, Soo-Hwan;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2019
  • Legged locomotion has high mobility on irregular surfaces by touching the ground at discrete points. Inspired by the creature's legged locomotion, legged robots have been developed to explore unstructured environments. In this paper, we propose a modular crawler that can easily adjust the number of legs for adapting the environment that the robot should move. One module has a pair of legs, so the number of legs can be adjusted by changing the number of modules. All legs are driven by a single driving motor for simple and compact design, so the driving axle of each module is connected by the universal joint. Universal joints between modules enable the body flexion for steering or overcoming higher obstacles. A prototype of crawler with three modules is built and the driving performance and the effect of module lifting on the ability to overcome obstacles are demonstrated by the experiments.

Bio-inspired leaf stent for direct treatment of cerebral aneurysms: design and finite element analysis

  • Zhou, Xiang;You, Zhong;Byrne, James M.D.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • Cerebral aneurysm is common lesion among adult population. Current methods for treating the disease have several limitations. Inspired by fern leaves, we have developed a new stent, called leaf stent, which can provide a tailored coverage at the neck of an aneurysm and thus prevent the blood from entering the aneurysm. It alone can be used to treat the cerebral aneurysm and therefore overcomes problems existing in current treating methods. The paper focuses on the numerical simulation of the leaf stents. The mechanical behaviour of the stent in various designs has been investigated using the finite element method. It has been found that certain designs provide adequate radial force and have excellent longitudinal flexibility. The performance of certain leaf stents is comparable and even superior to those of the commercially available cerebral stents such as the Neuroform stent and the Enterprise stent, commonly used for stent assisted coiling, while at the same time, providing sufficient coverage to isolate the aneurysm without using coils.

Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload (소형 6족 주행 로봇의 페이로드와 다리 강성이 로봇의 주행 성능에 미치는 영향)

  • Chae, Soo-Hwan;Baek, Sang-Min;Lee, Jongeun;Yim, Sojung;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.270-277
    • /
    • 2019
  • Inspired by small insects, which perform rapid and stable locomotion based on body softness and tripod gait, various milli-scale six-legged crawling robots were developed to move rapidly in harsh environment. In particular, cockroach's leg compliance was resembled to enhance the locomotion performance of the crawling robots. In this paper, we investigated the effects of changing leg compliance for the locomotion performance of the small light weight legged crawling robot under various payload condition. First, we developed robust milli-scale six-leg crawling robot which actuated by one motor and fabricated in SCM method with light and soft material. Using this robot platform, we measured the running velocity of the robot depending on the leg stiffness and payload. In result, there was optimal range of the leg stiffness enhancing the locomotion ability at each payload condition in the experiment. It suggests that the performance of the crawling robot can be improved by adjusting stiffness of the legs in given payload condition.

Statistical Estimation of Motion Trajectories of Falling Petals Based on Particle Filtering (Particle Filtering에 근거한 낙하하는 꽃잎의 운동궤적의 통계적 추정)

  • Lee, Jae Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.629-635
    • /
    • 2016
  • This paper presents a method for predicting and tracking the irregular motion of bio-systems, - such as petals of flowers, butterflies or seeds of dandelion - based on the particle filtering theory. In bio-inspired system design, the ability to predict the dynamic motion of particles through adequate, experimentally verified models is important. The modeling of petal particle systems falling in air was carried out using the Bayesian probability rule. The experimental results show that the suggested method has good predictive power in the case of random disturbances induced by the turbulence of air.

The methods of error detection at Digital circuit using the FPGA 2-dimensional array (FPGA 2 차원 배열을 사용한 디지털 회로에서 오류 검출의 방법)

  • Kim, Soke-Hwan;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.202-206
    • /
    • 2012
  • In this paper, we proposed on the direction of self-repairing mimicking the cell on the digital system design. Three-dimensional array of cells rather than using the original structure of FPGA, an array of blocks for efficient error detection methods were investigated. With a certain regularity, so the design method in detail by dividing the full array. The digital circuits can be detected fault location easily and quickly.

  • PDF

The methods of error detection at Digital circuit using the FPGA 2-dimensional array (FPGA 2차원 배열을 사용한 디지털 회로에서 오류 검출의 방법)

  • Kim, Soke-Hwan;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1306-1311
    • /
    • 2012
  • In this paper, we proposed on the direction of self-repairing mimicking the cell on the digital system design. Three-dimensional array of cells rather than using the original structure of FPGA, an array of blocks for efficient error detection methods were investigated. With a certain regularity, so the design method in detail by dividing the full array. The digital circuits can be detected fault location easily and quickly.

A Milli-Scale Hexapedal Robot using Planar Linkages (평면기구 메커니즘을 이용한 소형 6족 로봇)

  • Kim, Dong-Sun;Jung, Sun-Pill;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.97-102
    • /
    • 2018
  • A small and lightweight crawling robots have been actively studied thanks to their outstanding mobility and maneuverability. Those robots can navigate into more confined spaces that larger robots are unable to reach or enter such as debris and caves. In this paper, we propose a milli-scale hexapedal robot based on planar linkage design. To make this possible, two necessary conditions for successful crawling are satisfied: thrust force from the ground and aerial phase while running. These conditions are achieved through a newly developed leg design. The robot has a pair of legs and each leg has three feet. Those feet alternatively moves based on 1DOF planar linkage. This linkage is installed at each side of the robot and finally the robot shows the alternating gait and aerial phase during running. As a result, the robot runs with the crawling speed of 0.9 m/s.