• Title/Summary/Keyword: Bio-concentration

Search Result 2,025, Processing Time 0.024 seconds

Evaluating Soil Respiration as Indicator of Heavy Metal Pollution in Agricultural Field

  • Choi, Won-Suk;Hong, Young-Kyu;Min, Kyung-Jun;Kim, Kwang-Jin;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.472-481
    • /
    • 2017
  • Agricultural field near at the abandoned metal mine and industrial area has a high possibility to be polluted by heavy metals. However, concern about chemical properties including heavy metal concentration has been increased and biological properties such as soil respiration has been minimal in heavy metal polluted field. Therefore, main objective of this research was to evaluate soil respiration as an indicator of heavy metal pollution in agricultural field. Total of 60 sampling sites including each 30 sites of abandoned metal mine and industrial area were selected and heavy metal concentration, soil respiration, and chemical properties were measured. Results showed that heavy metal concentration in metal mine area was ranged Cu: $6.21~85.23mg\;kg^{-1}$, Pb: $23.84{\sim}1,044.72mg\;kg^{-1}$, As: $1.88{\sim}691.44mg\;kg^{-1}$, Zn: $18.72{\sim}527.55mg\;kg^{-1}$, Cd: $0.58{\sim}4.27mg\;kg^{-1}$, and Cu: $0.29{\sim}30.62mg\;kg^{-1}$, Pb: $4.41{\sim}19.77mg\;kg^{-1}$, As: $2.23{\sim}11.76mg\;kg^{-1}$, Zn $39.98{\sim}109.59mg\;kg^{-1}$, Cd $0.29{\sim}0.57mg\;kg^{-1}$ for industrial area respectively. While no sampling site was exceed the threshold value of each heavy metals in industrial field, metal mine area was highly polluted with Pb, As, Zn, and Cd. Soil respiration in the metal mine and industrial area was ranged $12.05{\sim}299.80mg\;O_2\;kg^{-1}$ and $27.68{\sim}330.94mg\;O_2\;kg^{-1}$, respectively. Correlation analysis between heavy metal concentration in soil and soil respiration showed that negative correlation was observed in metal mine area while no correlation was observed in industrial area. This result might indicate that as heavy metal concentration was increased, microbial activity in soil was decreased resulting decrease of soil respiration rate. Overall, soil respiration can be used as indicator of heavy metal pollution in soil and more biological properties need to be evaluated to better understand heavy metal pollution in soil.

Estimating Predicted Environmental Concentration of Veterinary Antibiotics in Manure and Soil

  • Kwon, A-Young;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.100-104
    • /
    • 2015
  • Adverse effect of veterinary antibiotics (VAs) released into environment has been issued recently and concerns about analysis and management for VAs in the environment were increased. Main objective of this research was to calculate predicted environmental concentration (PEC) of the VAs in soil based on avaiable statistical data and result of previous study such as consumption rate and physiological properties of VAs. Total of 5 VAs, Chlortetracycline (CTC), Oxytetracycline (OTC), Sulfadimethoxine (SDX), Sulfamethazine (SMT), and Tylosin (TYL) were examined. Result showed that calculated PEC value in manure and soil was ordered as SMT > TYL > SDX > CTC > OTC. Range of calculated value for manure and soil was 0.50-67.04 and $0.48-64.45mg\;kg^{-1}$ respectively. Comparing to measured concentration of VAs in manure and soil, lower concentration of VAs in manure and soil was evaluated due to fate and degradation of VAs in manure and soil. Overall, evaluated simple modeling for calculating PEC of VAs in manure and soil can be adapted for preliminary screening purpose in environmental risk assessment and more refined modeling is necessary to examine detailed assessment of VAs in manure and soil.

Effects of Ionic Strength in the Medium on Sample Preconcentration Utilizing Nano-interstices between Self-Assembled Monolayers of Gold Nanoparticles

  • Nguyen, Ngoc-Viet;Wu, Jian-Sheng;Jen, Chun-Ping
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.317-325
    • /
    • 2018
  • This paper investigated the effects of ionic strength in the medium on a preconcentrator for a protein sample with low concentration. The preconcentration chip was designed and fabricated using a polydimethylsiloxane replica through standard lithophotography. A glass substrate is silanized prior to functionalizing the nanoparticles for self-assembly at a designed region. Due to the overlap of electrical double layers in a nanofluidic channel, a concentration polarization effect can be achieved using an electric field. A nonlinear electrokinetic flow is induced, resulting in the fast accumulation of proteins in front of the induced ionic depletion zone, so called exclusion-enrichment effect. Thus, the protein sample can be driven by electroosmotic flow and accumulated at a specific location. The chip is used to collect fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) diluted in phosphate-buffered saline (PBS) buffer solution. Different concentrations of the buffer media were studied herein. Fluorescence intensity images show that the buffer concentration of 4 mM is more appropriate than all the other ones. The sample of FITC-BSA with an initial concentration of $10{\mu}M$ in the 4 mM PBS solution increases its concentration at the desired region by up to 50 times within 30 min, demonstrating the results in this investigation.

Influence of Acid and Salt Content on the Ethanol Production from Laminaria japonica (산 농도 및 염 농도가 다시마 에탄올 발효에 미치는 영향)

  • Lee, Sung-Mok;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.154-161
    • /
    • 2010
  • In the study, the effect of acid and salt concentrations during the production of bio-ethanol from various brwon-algae raw materials was investigated. Especially, the possibility of the conversion of various polysaccarides contained in Laminaria japonica was studied. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 strains in Laminaria japonica. The maximum bio-ethanol production of 2.09 g/L using heat-treatment of Laminaria japonica was achieved. The optimum concentration for reducing sugar conversion by Laminaria japonica was found to be 3.95 g/L at the HCl concentration of 0.1 N. But bio-ethanol production was higher than the case without the non-acid pretreatment. Among the various polysaccharides, only mannitol produced maximum 3.09 g/L bio-ethanol. In case of laminaran, the ethanol was produced only at 0.15 g/L only in 0.1 N HCl pretreatment medium and cell growth was higher than other pretreatment.

A Study on Characteristic of the Bio-ethanol Produced on Fruit Wastes for Direct Ethanol Fuel Cell (DEFC) (과일폐기물을 이용한 DEFC용 바이오에탄올 제조 및 특성에 관한 연구)

  • Lee, Nam-Jin;Kim, Hyun-Soo;Cha, In-Su;Choi, Jeong-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • This study discribes performance of DEFC (Direct Ethanol Fuel Cell) utilized bio-ethanol based on fruit wastes. To produce the bio-ethanol, fruit wastes were treated at temperature $120^{\circ}C$ and 90minutes in acid pre-treatment. After pre-treatment was done, alcohol fermentation process was running. Initial alcohol concentration was 5%. Using the multi coloumn distillation system, more than 95% ethanol was distilled and each component of bio-ethanol was analyzed. In DEFC performance test, it was revealed that cell performance was much higher than that of ethanol. Comparing ethanol with mixed fuel (bio-ethanol (10%) + ethanol (90%)), the performance of ethanol was higher than that of mixed fuel. Even though the bio-ethanol from the fruit wastes is corresponded with transport ethanol standards, it thought that organic matter in bio-ethanol could be negative effect on fuel cell.

A Study on Bio-solids Applicability as Soil Stabilizer (Bio-solids의 토양 안정화제 활용 가능성에 대한 연구)

  • Yang, Joo-Kyung;Kang, Seon-Hong;Lee, Chun-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • Recycling of industrial products as the stabilizers can be proper handling of industrial products and has positive side in terms of recycling of wastes. In this study, the final aims were to evaluate the usability as stabilizer of Bio-solids which was generated from contaminated soil with heavy metals after primary process and to compare the treatment efficiency with slag being currently applied in many existing sites. Soluble and exchangeable forms have closely related to pollution of groundwater and plant growth and they can be used to determine the effect of the stabilization efficiency. Slag and Bio-solids were tested to investigate the capacity of stabilizing arsenic. Slag treatment process 4 (PS-ball 5%) showed higher leachate concentration rather to 0.84% compared to treatment 1 (blank) based on an average of 0.63%. The other hand treatment 4 (Bio-solids 5%) showed the lowest soluble and exchangeable forms to 0.57% when Bio-solids was applied to stabilize arsenic. Thus, the leaching of arsenic will be more reduced if the Bio-solids are used as stabilizer in stead of slag which is being currently used in many fields.

Direct Bio-regeneration of Nitrate-laden Ion-exchange Resin (질산성질소에 파과된 이온교환수지의 생물학적 직접 재생)

  • Nam, Youn-Woo;Bae, Byung-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.777-781
    • /
    • 2013
  • Ion-exchange technology is one of the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. In this background, a combined bio-regeneration and ion-exchange system was operated in order to prove that nitrate-laden resins could be bio-regenerated through direct contact with denitrifying bacteria. A nitrate-selective A520E resin was successfully regenerated by denitrifying bacteria. The bio-regeneration efficiency of nitrate-laden resins increased with the amount of flow passed through the ion-exchange column. When the fully exhausted resin was bio-regenerated for 5 days at the flowrate of 30 BV/hr and MLSS concentration of $125{\pm}25mg/L$, 97.5% of ion-exchange capacity was recovered. Measurement of nitrate concentrations in the column effluents also revealed that less than 5% of nitrate was eluted from the resin during 5 days of bio-regeneration. This result indicates that the main mechanism of bio-regeneration is the direct reduction of nitrate by denitrifying bacteria on the resin.

Evaluating Ecotoxicity of Surface Water and Soil Adjacent to Abandoned Metal Mines with Daphnia magna and Eisenia fetida

  • Kim, Dae-Bok;Choi, Won-Suk;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • Heavy metal pollution in agricultural fields at the abandoned metal mines has been serious problems in Korea. In order to manage heavy metal pollution in surface water and soil, numerous remediation strategies have been established. Therefore, main purpose of this research was to examine feasibility of ecological toxicity assessment for establishing management strategy in heavy metal polluted agricultural fields. Heavy metal concentration in surface water and soil was monitored along with ecotoxicity experiment with Daphnia magna and Eisenia fetida. Result showed that high toxicity was observed in heavily polluted agricultural field with heavy metals. In case of mortality of Daphnia magna (85%) and Eisenia fetida (6.7%), the highest ratio was observed when heavy metal concentration in surface and soil was high. Calculated ecotoxicity index (EI) ranged 0.06-0.30 and the highest EI was observed in heavily polluted sites among 5 abandoned metal mines. Overall, ecological toxicity assessment is necessary to evaluate heavy metal pollution in agricultural fields near at the abandoned metal mines along with chemical concentration analysis.

Effects of different sulfur ion concentration in nutrient solution and light source on glucosinolate contents in kale sprouts (Brassica oleracea var. acephala)

  • Park, Ye-Jin;Chun, Jin-Hyuk;Woo, Hyunnyung;Maruyama-Nakashita, Akiko;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.261-271
    • /
    • 2017
  • The aim of this study was to investigate the amount of glucosinolates (GSLs) in kale sprouts (Brassica oleracea L. var. acephala) ('TBC') according to different concentrations of sulfur ions in sprout's nutrient solutions (0.0, 0.5, 1.0, and 2.0 mM) and to different light sources [Fluorescent lamp, Red, Blue, and Mix (R+B) LED]. Kale sprouts were cultivated in a growth chamber for 13 days in sulfur solutions. Kale sprouts were treated with fluorescent lamp and LED light sources for 5 days, from eight days after sowing to harvest. Amount of seven types of GSLs (progoitrin, sinigrin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin) were measured in kale sprouts after harvest. The total GSL content was influenced by different sulfur solution concentration, and it was the highest at S 0.5 mM ($172.54{\mu}mol{\cdot}g^{-1}DW$) and the lowest at S 2.0 mM ($163.09{\mu}mol{\cdot}g^{-1}DW$). The GSL content was influenced by different light source, and it was the highest with Red LED ($159.23{\mu}mol{\cdot}g^{-1}DW$) and the lowest with Blue LED ($147.57{\mu}mol{\cdot}g^{-1}DW$). As the sulfur solution concentration increased under all light source, progoitrin and sinigrin contents tended to decrease while glucobrassicin content showed an upward tendency for all of the light sources. The content of glucobrassicin was higher than that of progitrin when treated with sulfur solutions for all LED light sources. Sinigrin, which has excellent anti-cancer effects, showed the highest rate (92.2%) among all the GSLs, under all of the light sources.

Effect of Veterinary Antibiotics on the Growth of Lettuce

  • Kim, Hye Ji;Lee, Seung Hyun;Hong, Young Kyu;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.119-127
    • /
    • 2018
  • Veterinary antibiotics (VAs) has been used to treat animal disease and to increase body weight. However, released VAs in the soil via spreading of compost can transport to plant and affect its growth. Main purpose of this research was i) to monitor VAs concentration in plant and ii) to evaluate inhibition effect of VAs residuals on the plant growth. Red lettuce (Lactuca sativa) was cultivated for 35 days in the pot soil spiked with 3 different concertation (0.05, 0.5, $5.0mg\;kg^{-1}$) of chlortetracycline (CTC) and sulfamethazine (SMZ). After 35 days of cultivation, concentration of CTC and SMZ in the plant was measured. Residual of CTC and SMZ was only quantified at the range of $0.007-0.008mg\;kg^{-1}$ and $0.006-0.017mg\;kg^{-1}$ in the leaf and root respectively when high concentration ($5.0mg\;kg^{-1}$) of antibiotic was spiked in the soil. Leaf length and root mass was statistically reduced when $0.05mg\;kg^{-1}$ of CTC was spiked in the soil while no statistical difference was observed for SMZ treatment. This result might indicated that high $K_{ow}$ and $K_d$ value are the main parameters for inhibiting plant growth. Antibiotics that has a high $K_{ow}$ causing hydrophobicity and easy to bioaccumulate in the lipid cell membrane. Also, antibiotics that has a high $K_d$ properties can be sorbed in the root causing growth inhibition of the plant. Overall, management of VAs should be conducted to minimize adverse effect of VAs in the ecosystem.