• Title/Summary/Keyword: Bio-Sensor Network

Search Result 76, Processing Time 0.022 seconds

A Study on Real-Time Defect Detection System Using CNN Algorithm During Scaffold 3D Printing (CNN 알고리즘을 이용한 인공지지체의 3D프린터 출력 시 실시간 출력 불량 탐지 시스템에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.125-130
    • /
    • 2021
  • Scaffold is used to produce bio sensor. Scaffold is required high dimensional accuracy. 3D printer is used to manufacture scaffold. 3D printer can't detect defect during printing. Defect detection is very important in scaffold printing. Real-time defect detection is very necessary on industry. In this paper, we proposed the method for real-time scaffold defect detection. Real-time defect detection model is produced using CNN(Convolution Neural Network) algorithm. Performance of the proposed model has been verified through evaluation. Real-time defect detection system are manufactured on hardware. Experiments were conducted to detect scaffold defects in real-time. As result of verification, the defect detection system detected scaffold defect well in real-time.

FPGA Implementation of an Artificial Intelligence Signal Recognition System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2022
  • Cardiac disease is the most common cause of death worldwide. Therefore, detection and classification of electrocardiogram (ECG) signals are crucial to extend life expectancy. In this study, we aimed to implement an artificial intelligence signal recognition system in field programmable gate array (FPGA), which can recognize patterns of bio-signals such as ECG in edge devices that require batteries. Despite the increment in classification accuracy, deep learning models require exorbitant computational resources and power, which makes the mapping of deep neural networks slow and implementation on wearable devices challenging. To overcome these limitations, spiking neural networks (SNNs) have been applied. SNNs are biologically inspired, event-driven neural networks that compute and transfer information using discrete spikes, which require fewer operations and less complex hardware resources. Thus, they are more energy-efficient compared to other artificial neural networks algorithms.

Bio-AdHoc Sensor Networks for Disaster Emergency Management Systems (재난 관리용 시스템을 위한 센서 탑재 바이오 애드 혹 네트워크)

  • Lee, Dong-Eun;Lee, Goo-Yeon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.29-36
    • /
    • 2007
  • Ad hoc network does not need any preexisting network infrastructure, and it has been developed as temporal networks in the various fields. Infostation is an efficient system to transfer information which does not have delay sensitive characteristics. In this paper, we propose a disaster emergency management system using sensor attached animals' mobility combined with infostation system. We also analyze the performance of the proposed system by simulation. From the performance analysis results, we expect that the proposed system will be very useful to early detect big forest fires which occurs frequently in Korea mountain areas.

Development of a Data Acquisition System for the Long-term Monitoring of Plum (Japanese apricot) Farm Environment and Soil

  • Akhter, Tangina;Ali, Mohammod;Cha, Jaeyoon;Park, Seong-Jin;Jang, Gyeang;Yang, Kyu-Won;Kim, Hyuck-Joo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.426-439
    • /
    • 2018
  • Purpose: To continuously monitor soil and climatic properties, a data acquisition system (DAQ) was developed and tested in plum farms (Gyewol-ri and Haechang-ri, Suncheon, Korea). Methods: The DAQ consisted of a Raspberry-Pi processor, a modem, and an ADC board with multiple sensors (soil moisture content (SEN0193), soil temperature (DS18B20), climatic temperature and humidity (DHT22), and rainfall gauge (TR-525M)). In the laboratory, various tests were conducted to calibrate SEN0193 at different soil moistures, soil temperatures, depths, and bulk densities. For performance comparison of the SEN0193 sensor, two commercial moisture sensors (SMS-BTA and WT-1000B) were tested in the field. The collected field data in Raspberry-Pi were transmitted and stored on a web server database through a commercial communications wireless network. Results: In laboratory tests, it was found that the SEN0193 sensor voltage reading increased significantly with an increase in soil bulk density. A linear calibration equation was developed between voltage and soil moisture content depending on the farm soil bulk density. In field tests, the SEN0193 sensor showed linearity (R = 0.76 and 0.73) between output voltage and moisture content; however, the other two sensors showed no linearity, indicating that site-specific calibration is important for accurate sensing. In the long-term monitoring results, it was observed that the measured climate temperature was almost the same as website information. Soil temperature information was higher than the values measured by DS18B20 during spring and summer. However, the local rainfall measured using TR 525M was significantly different from the values on the website. Conclusion: Based on the test results obtained using the developed monitoring system, it is thought that the measurement of various parameters using one device would be helpful in monitoring plum growth. Field data from the local farm monitoring system can be coupled with website information from the weather station and used more efficiently.

A Study for the Measurement of Global Loads on Ship Structure Using Fiber Optic Sensors (광섬유 센서를 이용한 선체 구조의 Global 하중 추정에 관한 연구)

  • Kim, Myung-Hyun;Kim, Young-Jae;Kang, Sung-Won;Oh, Min-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • Ships and offshore structures are exposed to wave and engine excitation loadings during navigation and cargo/ballasting operations. These excessive loads may cause damages to hull and may result loss of life the ship. Therefore, it is important to develop a system that allow accurate measurements of global hull loads. The objective of the study is developing a fiber optic monitoring system that is capable of monitoring, recording and warning of the vessel performance. A method for measurement of global loads on a vessel, using strain measurements from a network of fiber optic strain sensors and extensive finite-element analyses(FEA) with idealistic load cases, is presented. The method has been successfully validated on the idealized ship structure model with strain sensors.

Study on Integrated Monitoring System for Protecting Water Pollution (수질오염 방지를 위한 통합 모니터링 시스템에 관한 연구)

  • Yang, Jae-Soo;Kim, Yoon-Hyun;Han, Yong-Hwan;Lee, Young-Ha;Kim, Jin-Young
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.412-416
    • /
    • 2011
  • The conventional monitoring system for water pollution measurement is quite simple and independent and it has a lot of draw backs such as cost, installation, etc. So, in this paper, we have measured the water pollution system through a bacterial species, photobacterium phosphoreum. A novel integrated monitoring system technology has been developed which could easily dictate and analyze the major water pollutants and its surrounding environment in an accurate way. The system constitutes of bionic technology, information technology and environmental engineering technology. As a result, integrated monitoring system can observe the water pollution and various water environment of the whole country. Also, through the sensors of USN, Zigbee, RFID and middle ware, which can provide service and construct service platform, a properly standardized plan with remarkable service platform has been established through this investigation.

The Design and Implementation of the Position Calibration System Using Sensor on u-WBAN (u-WBAN 기반의 센서를 이용한 자세교정 시스템 설계 및 구현)

  • Moon, Seung-Jin;Park, Yoon-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.304-310
    • /
    • 2010
  • Chronic pain and herniated disk is a common disease that 80% of adults are experienced. There diseases rates of caused by the physical shock, such as the traffic accident, and the accidental fall is about 10%. And the most of these diseases is caused by having habitual incorrect position. People know that incorrect position would cause to accumulate continuous stress, but it is not easy to correct position. Because it does not recognize incorrect position repeated habitual consequently. This system collects data of user position after sensors that could measure position attach on use and presumes correct position used by position presumption algorithms. Its system purpose is continuing incorrect position could be aware to user and lead to change to correct position to prevent habituation of incorrect position. If habitual of correct position continues through accurate measurement and repeating cognitive learning, it would help for children and chronic patience.

Design of Adaptive Neuro-Fuzzy Inference System Based Automatic Control System for Integrated Environment Management of Ubiquitous Plant Factory (유비쿼터스 식물공장의 통합환경관리를 위한 적응형 뉴로-퍼지 추론시 스템 기반의 자동제어시스템 설계)

  • Seo, Kwang-Kyu;Kim, Young-Shik;Park, Jong-Sup
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.169-175
    • /
    • 2011
  • The adaptive neuro-fuzzy inference system (ANFIS) based automatic control system framework was proposed for integrated environment management of ubiquitous plant factory which can collect information of crop cultivation environment and monitor it in real-time by using various environment sensors. Installed wireless sensor nodes, based on the sensor network, collect the growing condition's information such as temperature, humidity, $CO_2$, and the control system is to monitor the control devices by using ANFIS. The proposed automatic control system provides that users can control all equipments installed on the plant factory directly or remotely and the equipments can be controlled automatically when the measured values such as temperature, humidity, $CO_2$, and illuminance deviated from the decent criteria. In addition, the better quality of the agricultural products can be gained through the proposed automatic control system for plant factory.

Development of HRP-modified Carbon Composite Biosensor and Electrochemical Analysis of H2O2 (Horseradish peroxidase가 변성된 탄소복합 바이오센서 개발 및 전기화학적 H2O2분석)

  • Park, Deog-Su
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.571-576
    • /
    • 2012
  • A sol-gel derived carbon composite electrodes (CCEs) were fabricated by mixing horseradish peroxidase (HRP), sol of tetraethoxysilane (TESO), and graphite powder. The HRP solution was added to the sol solution of TEOS, and then graphite powder was added to this mixture. The resulting carbon ceramic network effectively encapsulated HRP and shows a catalytic reduction starting at -0.2 V for $H_2O_2$. The optimum conditions for $H_2O_2$determination have been characterized with respect to the enzyme loading ratio and pH. The linear range and detection limit of $H_2O_2$ detection were from 0.2 mM to 2.2 mM and 0.035 mM, respectively. The common electroactive interferences such as ascorbic acid, acetaminophene, and uric acid were not affected upon the response to $H_2O_2$ at the HRP biosensor due to low detection potential.

Development of Mobility and Vitality Signal Monitoring System Based on ZigBee-PSTN Gateway for the Elderly (ZigBee-PSTN 기반의 독거노인 활동량 및 생체신호 모니터링 시스템 개발)

  • Choi, Kyung-Sun;Chun, Joong-Chang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Recently the number of the elderly who live alone are increasing more and more as the average life span is prolonged. The elderly are probably in danger at home without being helped due to external aggressions or sudden health problems. Accordingly, more and more interests are taken in medical welfare for the healthy life of the seniors. In this paper, we have developed a mobility and vitality signal monitoring system based on ZigBee-PSTN gateway for the elderly. This combination of ZigBee wireless sensor network and PSTN can be easily established even in the poor internet infrastructure as is usually common for the elderly, with the advantage of providing non-constrained monitoring feature. The research result can be extended to the future tele-medicine system.