• Title/Summary/Keyword: Bio-Sensor Network

Search Result 76, Processing Time 0.026 seconds

Firing Offset Adjustment of Bio-Inspired DESYNC-TDMA to Improve Slot Utilization Performances in Wireless Sensor Networks

  • Kim, Kwangsoo;Shin, Seung-hun;Roh, Byeong-hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1492-1509
    • /
    • 2017
  • The wireless sensor network (WSN) is a key technology to support the Internet of things (IoT) paradigm. The efficiency of the MAC protocol in WSN is very important to take scalability with restricted wireless resources. The DESYNC-TDMA has an advantage of simple distributed slot allocation inspired by nature, but there is a critical disadvantage of split slots by firing message. The basic split slot model has less efficiency for continuous packet transmitting because of wasting of the slots less than the packet size. In this paper, we propose a firing offset adjustment scheme to improve the efficiency of slot utilizations, which can manage the slot assigned to each node as a single large block, called the single slot model. The performance analysis models for both the existing and the proposed schemes are also derived. Experimental results show that the proposed method provide better efficiency of slot utilization than the existing schemes without any loss of the nature of the desynchronization.

The Design and Implementation of a Real-Time FMD Cattle Burial Sites Monitoring System Based-on Wireless Environmental Sensors (u-EMS : 센서네트워크 기반의 가축매몰지 악취환경정보 실시간 모니터링 시스템 설계 및 구현)

  • Moon, Seung-Jin;Kim, Hong-Gyu;Park, Kyu-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1708-1721
    • /
    • 2011
  • Recent outbreak of cattle diseases such as foot-and-mouth disease(FMD) requires constant monitoring of burial sites of mass cull of cattles. However, current monitoring system takes environmental samples from burial sites with period of between one and two weeks, which makes it impossible for non-stop management of hazardous bio-waste. Therefore, in this study, we suggest an improved real-time environmental monitoring system for such bio-hazardous sites based on wireless sensor networks, which makes constant surveillance of the FMD burial sites possible. The system consists mainly several wireless environmental monitoring sensors(i.e dust, Co2, VOC, NH3, H2S, temperature, humidity) nodes and GPS location tracking nodes. Through analysis of the relayed of the environmental monitoring data via gateway, the system makes it possible for constant monitoring and quick response for emergency situation of the burial sites. In order to test the effectiveness of the system, we have installed a set of sensor to gas outlets of the burial sites, then collected and analyzed measured bio-sensing data. We have conducted simulated emergency test runs and was able to detect and monitor the foul smell constantly. With our study, we confirm that the preventive measures and quick response of bio environmental accident are possible with the help of a real-time environmental monitoring system.

IoT based Smart Health Service using Motion Recognition for Human UX/UI (모션인식을 활용한 Human UI/UX를 위한 IoT 기반 스마트 헬스 서비스)

  • Park, Sang-Joo;Park, Roy C.
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In this paper, we proposed IoT based Smart Health Service using Motion Recognition for Human UX/UI. Until now, sensor networks using M2M-based u-healthcare are using non-IP protocol instead of TCP / IP protocol. However, in order to increase the service utilization and facilitate the management of the IoT-based sensor network, many sensors are required to be connected to the Internet. Therefore, IoT-based smart health service is designed considering network mobility because it is necessary to communicate not only the data measured by sensors but also the Internet. In addition, IoT-based smart health service developed smart health service for motion detection as well as bio information unlike existing healthcare platform. WBAN communications used in u-healthcare typically consist of many networked devices and gateways. The method proposed in this paper can easily cope with dynamic changes even in a wireless environment by using a technology supporting mobility between WBAN sensor nodes, and systematic management is performed through detection of a user's motion.

  • PDF

Design of a Greenhouse Monitoring System using Arduino and Wireless Communication (아두이노와 무선통신을 이용한 온실 환경 계측 시스템 설계)

  • Sung, Bo Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.452-459
    • /
    • 2022
  • One of the important factors among the smart farm factors is environmental measurement. This study tried to design an environmental measurement monitoring system through Bluetooth wireless communication with LoRa using the open source programs Arduino, App Inventor, and Node Red. This system consists of Arduino, LoRa shield, temperature and humidity sensor (SHT10), and carbon dioxide sensor (K30). The environmental measurement system is configured as a system that allows the sensor to collect environmental data and transmit it to the user through wireless communication to conveniently monitor the farm environment. As libraries used in the Arduino program, LoRa.h, Sensirion.h, LiquidCrystal_I2C.h and K30_I2C.h were used. When receiving environmental data from the sensor at regular intervals, coding using average value was used for data stabilization. An Android-based app was developed using Node Red and App Inventor program as the user interface. It can be seen that the environmental data for the sensor is well collected with the screen output to the serial screen of Arduino, the screen of the smartphone, and the user interface of Node Red. Through these open source-based platforms and programs will be applied to various agricultural applications.

Integrated Network System of Milk Cow Stock-Farming Facilities for Stockbreeding Management (사양관리를 위한 젖소 목장 시설 통합 네트웍 시스템)

  • 김지홍;이수영;김용준;한병성;김동원
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.199-208
    • /
    • 2002
  • This paper introduces the method to make management network about milking cow farm tasks. The object of this research was to design of biological measuring system and managing network system in a livestock farm. This auto-management system provides informations about individual cows' temperature, conductivity of milk and weight for efficient management of feeding, and milking works by a micro-processor and RS -485 type serial COM. ports. And measured bio-data which are basic informations for remote raising management are saved to user PC by serial communication between the PLC and user PC. Milking cow farm is divided into three working place to each measurement work and feed. The first working place is milking station which has two thermometers, a conduct meter and a scale set. The second working place is feeding station, and the third place is cattle cage. These are combined by network system and the PLC which is used to drive network and sub-modules. Sub-modules have a micro-process to control the sensor and to interface with network. The PLC which drive network and control sequence has two serial communication port to be linked with user PC for sending the measured data and for receiving data. Above all, in this study tells the sequence operating method by the driving scenario of breeding milk cow for livestock auto-management using the PLC and network system.

  • PDF

Quality Estimation of Net Packaged Onions during Storage Periods using Machine Learning Techniques

  • Nandita Irsaulul, Nurhisna;Sang-Yeon, Kim;Seongmin, Park;Suk-Ju, Hong;Eungchan, Kim;Chang-Hyup, Lee;Sungjay, Kim;Jiwon, Ryu;Seungwoo, Roh;Daeyoung, Kim;Ghiseok, Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.237-244
    • /
    • 2022
  • Onions are a significant crop in Korea, and cultivation is increasing every year along with high demand. Onions are planted in the fall and mainly harvested in June, the rainy season, therefore, physiological changes in onion bulbs during long-term storage might have happened. Onions are stored in cold room and at adequate relative humidity to avoid quality loss. In this study, bio-yield stress and weight loss were measured as the quality parameters of net packaged onions during 10 weeks of storage, and the storage environmental conditions are monitored using sensor networks systems. Quality estimation of net packaged onion during storage was performed using the storage environmental condition data through machine learning approaches. Among the suggested estimation models, support vector regression method showed the best accuracy for the quality estimation of net packaged onions.

Chronic Disease Management using Smart Mobile Device (스마트 모바일 기기를 이용한 만성질환 관리)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.335-342
    • /
    • 2014
  • According to the recent trends in the growing elderly population, the chronically ill have increased. Thus the importance of the health care issues for them has emerged. In this paper, we want to implement a chronic disease management system using smart mobile devices. Proposed chronic disease management system is consisted of the biometric sensor, smart mobile devices, the patient management server, patient management DB, and patient symptoms analysis agent. The biometric sensor detects a biological information. Smart mobile devices receive the patient information from the sensor and transmit the information to the patient management server. The patient management server, patient management DB, and patient symptoms agent analysis agent analyze to process data delivered through a wireless communication network. Bio-signals includes modules of ECG, blood pressure, blood sugar and PPG. We are able to determine the current health status by monitoring measured biometric data through chronically ill health management system. We will focus on the individual service to be appropriate for a patient group in a mobile environment.

The Mobile Health-Care Garment System for Measurement of Cardiorespiratory Signal (ECG와 호흡 측정이 가능한 모바일 헬스케어 의류 시스템)

  • Kim, Jeong-Do;Kim, Kap-Jin;Chung, Gi-Su;Lee, Jung-Hwan;Ahn, Jin-Ho;Lee, Sang-Goog
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.145-152
    • /
    • 2010
  • Most wearable system for mobile healthcare applications consists of three parts. The first part is the sensing elements based on bio-signal, the second is the circuit module for control, data acquisition and wireless communication and control and the third is garment with a built-in electrodes and circuits. The existing healthcare garment systems have to find a solution to signal-wire and uncomfortable and inappropriate electrode to long-term attachment. Even if the wireless communication is used for healthcare garment system, the interface between sensors and circuits have to use wires. To solve these problems, this paper use electrode using PEDOT coated PVDF nanoweb for ECG signal and PVDF film sensor for respiratory signal. And, we constructed garment network using digital yarn of 10um, and transmitted ECG and respiratory signal to mobile phone through the integrated circuit with bluetooth called station To evaluate feasibility of the proposed mobile healthcare garment system, we experimented with transmission and measurement of ECG and respiratory signal using nanoweb electrode and digital yarn. We got a successful result without noise and attenuation.

Research on the Indices for Demonstrating Cell Conditions

  • Kim, Ik-Hyun;Pan, Sung-Bum
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.324-328
    • /
    • 2012
  • In the past a few decades, various kinds of cells have been examined in laboratories all over the world, and their interesting results have been expressed through various methods in journal publications. For a representative example, the increment or reduction of cell numbers during a bio-related experimental process has been demonstrated using the hazard ratio in survival analysis or in the form of a graph. In addition, the condition of cells such as their normality or abnormality would be indicated by the images of the cell nuclei or membranes treated with proper fluorescent labeling. However, the above methods seem to not be quantitative but rather qualitative assessments, which might be difficult to provide people with the eidetic understanding through parameters or numerical data. With adequate suggestions on any indices enabling the explanation for cell conditions, some analyses may be underestimated due to the lack of objectiveness caused by merely linguistic evaluation for the cell conditions, not numerally scientific interpretation. Therefore, in this study, we would suggest some indices enabling quantitative analysis on the cellular conditions.

Biometric information database and service modelling in digital patch system

  • Lee, Tae-Gyu
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.161-168
    • /
    • 2018
  • Recently, the bio-sensing information systems for collecting and analysing human body information of a patient in real time in the field of medical information and healthcare information service are continuously increasing. Specially, various wearable devices such as a wrist, a garment, and a skin attachment type for supporting health information of a mobile user are rapidly increasing. Until now, there is no patch-type biometric information service model. Therefore, this paper presents a biometric information system model and the application examples to support biometric information sensing and health information service of mobile user with digital patch system as a new biometric information system. As a result, through this research, research issues based on digital patch system are searched to suggest the direction of continuous research.