• Title/Summary/Keyword: Bio plastics

Search Result 45, Processing Time 0.027 seconds

Increased Tolerance to Furfural by Introduction of Polyhydroxybutyrate Synthetic Genes to Escherichia coli

  • Jung, Hye-Rim;Lee, Ju-Hee;Moon, Yu-Mi;Choi, Tae-Rim;Yang, Soo-Yeon;Song, Hun-Suk;Park, Jun Young;Park, Ye Lim;Bhatia, Shashi Kant;Gurav, Ranjit;Ko, Byoung Joon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.776-784
    • /
    • 2019
  • Polyhydroxybutyrate (PHB), the most well-known polyhydroxyalkanoate, is a bio-based, biodegradable polymer that has the potential to replace petroleum-based plastics. Lignocellulose hydrolysate, a non-edible resource, is a promising substrate for the sustainable, fermentative production of PHB. However, its application is limited by the generation of inhibitors during the pretreatment processes. In this study, we investigated the feasibility of PHB production in E. coli in the presence of inhibitors found in lignocellulose hydrolysates. Our results show that the introduction of PHB synthetic genes (bktB, phaB, and phaC from Ralstonia eutropha H16) improved cell growth in the presence of the inhibitors such as furfural, 4-hydroxybenzaldehyde, and vanillin, suggesting that PHB synthetic genes confer resistance to these inhibitors. In addition, increased PHB production was observed in the presence of furfural as opposed to the absence of furfural, suggesting that this compound could be used to stimulate PHB production. Our findings indicate that PHB production using lignocellulose hydrolysates in recombinant E. coli could be an innovative strategy for cost-effective PHB production, and PHB could be a good target product from lignocellulose hydrolysates, especially glucose.

Residue Study for Bisphenol A in Agricultural Reservoirs (농업용 저수지에서 Bisphenol A의 잔류실태조사)

  • Cho, Il Kyu;Nam, Hyo Song;Jeon, Yongbae;Park, Jun sung;Na, Tae Wong;Kim, Back Jong;Kan, Eunsung
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.270-277
    • /
    • 2016
  • BACKGROUND: Significant amount of bisphenol A has been released from the manufacturing process of plastics, epoxy resins, dental material and flame retardants. Bisphenol A has been detected at trace levels in wastewater, surface water, landfill leachate and drinking water. However, the residual survey of bisphenol A has not been performed in agricultural reservoir beside agricultural environment cultivating crops. This study was conducted to monitor the residual bisphenol A in national agricultural reservoirs and understand a level of contamination of bisphenol A in the agricultural environment in Korea. METHODS AND RESULTS: The water and water sediment were collected at agricultural reservoirs in Chungnam, Chungbuk, Kyunggi, Jeonnam, Jeonbuk, Kyungnam and Kyungbuk province. Bisphenol A was analyzed by the LC-MS/MS with triple quad 4500. The recovery of water and water sediment in the agricultural reservoirs showed the level of 95.7~97.2% and 91.5~100.3%, respectively. CONCLUSION: Bisphenol A was detected at the level of $0.05{\mu}g/L{\sim}0.18{\mu}g/L$ and $0.1{\mu}g/kg{\sim}34{\mu}g/kg$ in water and water sediment of the reservoirs, respectively. Based on the results, the residue of bisphenol A will be tried in the crops surrounding these agricultural reservoirs where bisphenol A detected above $10{\mu}g/kg$ of bisphenol A.

Effects of Bisphenol A to interspecific hybrids between marine medaka Oryzias dancena and javanese medaka O. javanicus (바다송사리, Oryzias dancena와 자바송사리, O. javanicus 간 잡종에 대한 비스페놀 A의 효과)

  • Kim, Bong-Seok;Song, Ha-Yeun;Nam, Yoon-Kwon;Kim, Dong-Soo
    • Journal of fish pathology
    • /
    • v.24 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • Bisphenol A (BPA) is mainly used in the production of epoxy resins and polycarbonate plastics, which is a known endocrine disruptor and acutely toxic to aquatic organisms. In this study, estrogenic effect of BPA was investigated on hybrid between Oryzias dancena and O. javanicus (ODJ). ODJ were exposed to BPA of various concentrations (eg. 2.5 mg/L, 5.0 mg/L and 10.0 mg/L) for 56 days. The growth rate, abnormality and the ratio of female and male were observed in test group and control group. As a result, the growth was $14.7{\pm}2.0$ mm in total length (TL) in 2.5 mg/L, $13.7{\pm}2.5$ mm in 5.0 mg/L, $12.8{\pm}2.5$ mm in 10.0 mg/L in test group while it was $18.0{\pm}1.2$ mm in TL in control group which was not treated with bisphenol A. The result showed that the growth decreased as the concentration of BPA increased. The abnormality rate was 13.6% in control group, 65.4% in 2.5 mg/L, 81.3% in 5.0 mg/L and 98.1 % in 10.0 mg/L which showed increase in abnormality as an increase of BPA concentration. As a result of analyzing ratio of sex in the test group and control group, 6.0% was examined to be interspecific in controls, 76.9% in 2.5 mg/L and 100.0% in 5.0 mg/L and 10.0 mg/L. In conclusion, these results suggest that BPA has estrogenic effect on ODJ.

Biodegradation effect of cross-cultivated fungi and edible mushrooms on plastic films (식용버섯과 진균 교차 배양을 활용한 플라스틱 필름의 생물학적 분해효과)

  • Doo-Ho Choi;Eunji Lee;Gi-Hong An;Kang-Hyo Lee
    • Journal of Mushroom
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2024
  • Plastics are widely used in industries in human society and because of their structural stability, degradation is a serious global issue. To estimate the degradation of plastic, 31 edible mushrooms were cultured with the selected plastic films (polyethylene [PE], polystyrene [PS], and poly(ethylene terephthalate) [PET]) for 3 months at 25 ℃. Measuring the weight of the films showed that four species of mushrooms, namely Porostereum spadiceum, Ganoderma lucidum, Coprinellus micaceus, and Pleurotus ostreatus, exhibited the highest degrees of plastic degradation. In addition, the mushrooms and fungi that exhibited the most significant plastic degradation were cross-cultured to promote this degradation. As a result, cross-cultivation of G. lucidum and Aspergillus niger showed a weight loss of 2.49% for the PET film. For the PS film, Aspergillus nidulans showed a weight loss of 4.06%. Cross-cultivation of A. nidulans and C. micaceus, which showed a weight loss of 2.95%, was noted as an alternative for PS biodegradation, but is harmful to humans. These bio-degradation effects of edible mushroom will contribute to the development of alternatives for eco-friendly plastic degradation.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.