• Title/Summary/Keyword: Bio membrane

Search Result 424, Processing Time 0.028 seconds

Enhancement of Antifungal Activity of Anthracnose in Pepper by Nanopaticles of Thiamine Di-lauryl Sulfate (비타민 B1 유도체(Thiamine Di-lauryl Sulfate:TDS)의 나노입자화를 통한 고추탄저병균의 항진균 활성 증진)

  • Seo, Yong-Chang;Cho, Jeong-Sub;Jeong, Hae-Yoon;Yim, Tae-Bin;Cho, Kyoung-Sook;Lee, Tae-Woo;Jeong, Myoung-Hoon;Lee, Gang-Hyeong;Kim, Sung-Il;Yoon, Won-Byung;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.198-204
    • /
    • 2011
  • This study was performed to enhance antifungal activity of anthracnose in chili pepper by nanopaticles of thiamine di-lauryl sulfate (TDS) through high pressure homogenization process. Yield of TDS was 79.14% by reaction of thiamine hydrochloride and sodium lauryl sulfate. TDS nanopaticle solution was manufactured through high pressure homogenization process. The turbidity of nanoparticles solution was increased with increasing the concentration of TDS, and nanoparticles solution of 100 ppm was showed the highest turbidity with absorbance of 3.212. The size of nanoparticles solution was measured as average 258.6 nm by DLS. Nanoparticles solution of 100 ppm showed growth inhibition activity with higher than about 80% compared to the control group against Colletotrichum gloeosporioides. Finally, nanoparticles solution was increased effectively the penetration of the TDS nanopaticles on attached cell membrane of hyphae and started to destruct the cells under microscope observation. Consequently, we suggested that the TDS nanoparticle solution by high pressure homogenization process might be suitable biochemical pesticides for improving the antifungal activities against anthracnose in pepper.

Anaplasma Phagocytophilum Major Surface Protein (Msp)-2 Directly Binds to Platelet Selectin Glycoprotein Ligand-1 (CD162) Prior to Cell Entry and Infection (숙주세포 침입을 위한 Anaplasma phagocytophilum의 주요 표면단백질 (Msp)-2과 PSGL-1 (CD162)과의 반응)

  • Park Jin-Ho
    • Journal of Veterinary Clinics
    • /
    • v.23 no.1
    • /
    • pp.9-13
    • /
    • 2006
  • Anaplasma phagocytophilum major surface protein-2 (Msp2 or p44) is the immunodominant outer membrane protein of the bacterium. Recently, we disclosed that Msp2 was an A. phagocytophilum adhesin for binding to host neutrophils and HL-60 cells, probably mediated by attachment to platelet selectin glycoprotein ligand-1 (PSGL-1). In this study, we further elucidated that Msp2 bound to PSGL-1/FucT IV-transfected BJAB but not nontransfected BJAB cells. Binding of recombinant Msp2 or cell (lee bacteria to the surface of PSGL-1/FucT IV-transfected BJAB cells was significantly higher than to nontransfected BJAB cells (p<0.01 and p<0.01). Also, Msp2 monoclonal antibody and soluble recombinant Msp2 as antagonist led to concentration-dependent reductions in A. phagocytophilum adhesln (p<0.05 and p<0.01) to transfected BJAB cells. Thus, we conclude that Msp2 of. A. phagocytophilum acts as an adhesin by which the bacterium binds to PSGL-1 on host neutrophils and myeloid cells.

Effect of Red Ginseng Water Extract on Trypsin Activity (홍삼 물추출물이 Trypsin 활성에 미치는 영향)

  • Lee, Jong-Won;Kim, Na-Mi;Do, Jae-Ho
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • This study was carried out to investigate the effect of red ginseng water extract (RGWE) on trypsin activity. After extraction of fat soluble and saponin component from red ginseng powder by methyl alcohol, the residue was extracted with distilled water, and manufactured to water extract. The extract was dialyzed with different molecular cut off membrane. Trypsin activity demonstrated the highest level at the RGWE concentration of 9${\times}$10$\^$-2/% in reaction mixture, and also increased to 15% at 2.9${\times}$10$\^$-3/%. Km value was decreased and Vmax was increased in the present of red ginseng water extract. Red ginseng water extract was partially purified by dialysis, Bio-Gel P-I0 and DEAE-cellulose column chromatography. The active fraction demonstrated positive reaction to ninhydrin, DNS and folin reaction.

Cell Disruption of Dunaliella salina using Batch Low Frequency Non-Focused Ultrasound (비집속 회분저주파를 이용한 Dunaliella salina 세포 파쇄)

  • Choi, Jun-Hyuk;Kim, Gwang-Ho;Park, Jong-Rak;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.63-71
    • /
    • 2021
  • Using fossil fuels in existing industrial systems causes a variety of social problems. Recently, many studies have been conducted on bio-refineries, which aim to actively utilize biomass to reduce the use of fossil fuels and solve various social problems. Among them, research using microalgae as a third-generation biomass has attracted considerable attention. Microalgae use inorganic matter to produce organic matter, and cell destruction is necessary to extract useful organic materials from microalgae. The extracted organic materials are currently used in various industrial fields. Numerous cell-destruction methods exist. We have investigated cell disruption by sonication, especially its efficiency. Ultrasound is a sound wave with frequencies above 20 kHz, and destroys cells by sending high energy through a cavitation that occurs, according to the characteristics of the sound wave. The Dunaliella salina microalgae used in this study was cultured in a flat-type photobioreactor. Experiments were performed using a batch low-frequency processing device. Logistic model was applied to analyze the results of cell-destruction experiments using ultrasound. The proper conditions for the most efficient cell destruction were OD 1.4(microalgae concentration)), 54watt(output power) and 200mL(microalgae capacity).

Management of Food Allergy in the Facilities Registered at Center for Children's Foodservice Management in Gangdong-gu (강동구 어린이급식관리지원센터 등록 시설의 식품알레르기 관리 현황)

  • Kim, Soon Mi
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.5
    • /
    • pp.396-407
    • /
    • 2021
  • Objectives: We examined the common allergenic foods, symptoms and management of food allergies in children attending the facilities registered at Center for Children's Foodservice Management in Gangdong-gu, Korea. Methods: The survey was conducted among the directors or head teachers of 186 children's food service facilities with 7,591 children in 2019. The questionnaire consisted of three parts, including general information about food service facilities, information related to food allergies and allergenic foods and symptoms in individual children. Results: The number of children with food allergy was 271 (3.6%), and the proportion decreased with the increase of age. There were 91 children (33.6%) with a medical certificate, and these children had a significantly higher number of allergenic foods and symptoms than those without a medical certificate. Allergenic food groups included meat, fish, eggs and legumes (59.1%), fruits (12.4%), milk and dairy products (8.9%), cereals (7.8%), vegetables (6.2%), processed foods (3.8%) and oils and sugars (1.9%). Eggs accounted for 22.1%, followed by peanut and tree nuts (18.6%), fruits (12.4%), milk and dairy products (8.9%), shellfish (8.6%), vegetables (6.2%), fish (5.7%), cereals (4.3%) and meat (1.1%). The common allergenic foods were eggs, peanuts, walnuts, kiwi, shrimp, milk, tomatoes, mackerel, blue-green fish, peaches, shellfish (clams and abalone), buckwheat, wheat and soybeans. The most common allergic symptoms were skin and mucous membrane symptoms, such as hives, rash, itching and oral angioedema. Meal management for children with food allergies showed different trends depending on the causative food. Conclusions: The objective diagnosis by an allergist should be done for food allergy management in children's catering facilities. A system for systematic meal management of causative foods should be prepared.

Comparison Analysis of Antioxidant Effects from Rutaceae Fruits

  • Kim, Mee-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.157-163
    • /
    • 2021
  • In this study, we investigated the antioxidants activity by measuring electron donating ability and ABTS radical scavenging ability of the extracts from Rutaceae fruits (citron, grapefruit, lemon, mandarin orange, orange, trifoliate) to evaluate its use as a antioxidants in foods and cosmetics. Rutaceae fruits extract were separated in two parts of whole fruit (pulp, pulp fegment membrane, peel) and peel, dried, and then extracted with 70% ethanol. As a result of comparing the antioxidant effect at the concentration of 10,000 ㎍/mL, the electron donating ability was higher in the dried lemon peel extract (DLPE, 88.15%) and the dried citron whole fruit extract (DCWE, 80.44%), and the ABTS radical scavenging ability was highest in lemon peel and dried peel extract at 94.85% (FLPE) and 92.83% (DLPE). In conclusion, it was confirmed that lemon showed the highest antioxidant effect among the Rutaceae fruits(citron, grapefruit, lemon, mandarin orange, orange, trifoliate), and it was confirmed that the dried peel extract had a significant effect. Therefore it is considered that the dried lemon peel extract has the potential to be used as a natural antioxidant material in food and cosmetics.

Investigation of Antimicrobial Activity of Rutaceae Fruit Ethanol Extracts Against Microorganisms-induced Skin Inflammation

  • Kim, Mee-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.237-245
    • /
    • 2021
  • This study investigated the Antimicrobial activity of Rutaceae fruit ethanol extracts against microorganisms-induced skin inflammation in cosmetic materials. Rutaceae fruits were separated in two parts of whole fruit (pulp, pulp fegment membrane, peel) and peel, and extracted with 70% ehtanol. The results demonstrated that Rutaceae fruit ethanol extracts showed antimicrobial activity in 5 strains except Staphylococcus aureus. In particular, the antimicrobial activity against Staphylococcus epidermidis was the best in fresh lemons whole fruit. The antimicrobial activity against Escherichia coli was shown only in fresh lemon peel and fresh trifoliate peel. Additionally, antimicrobial activity against Propionibacterium acnes was shown only in the dried lemon peel. In the results of antimicrobial activity against Pityrosporum ovale, in the case of fresh fruits, citron whole fruits showed the highest effect, followed by lemon whole fruits and mandarin orange peel. And in the case of dried fruits, orange peel showed the highest effect, followed by trifoliate peel, mandarin orange peel and lemon peel. Therefore, it is considered that lemon, which shows antimicrobial activity against all skin inflammation-causing microorganisms, can be used as a natural material for improving skin inflammation in cosmetics.

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen;Xiangjing Xu;Xin Ju;Lishi Yan;Liangzhi Li;Lin Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2023
  • Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Inhibition of Polyphosphate Degradation in Synechocystis sp. PCC6803 through Inactivation of the phoU Gene

  • Han-bin Ryu;Mi-Jin Kang;Kyung-Min Choi;Il-Kyu Yang;Seong-Joo Hong;Choul-Gyun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.407-414
    • /
    • 2024
  • Phosphorus is an essential but non-renewable nutrient resource critical for agriculture. Luxury phosphorus uptake allows microalgae to synthesize polyphosphate and accumulate phosphorus, but, depending on the strain of algae, polyphosphate may be degraded within 4 hours of accumulation. We studied the recovery of phosphorus from wastewater through luxury uptake by an engineered strain of Synechocystis sp. with inhibited polyphosphate degradation and the effect of this engineered Synechocystis biomass on lettuce growth. First, a strain (∆phoU) lacking the phoU gene, which encodes a negative regulator of environmental phosphate concentrations, was generated to inhibit polyphosphate degradation in cells. Polyphosphate concentrations in the phoU knock-out strain were maintained for 24 h and then decreased slowly. In contrast, polyphosphate concentrations in the wild-type strain increased up to 4 h and then decreased rapidly. In addition, polyphosphate concentration in the phoU knockout strain cultured in semi-permeable membrane bioreactors with artificial wastewater medium was 2.5 times higher than that in the wild type and decreased to only 16% after 48 h. The biomass of lettuce treated with the phoU knockout strain (0.157 mg P/m2) was 38% higher than that of the lettuce treated with the control group. These results indicate that treating lettuce with this microalgal biomass can be beneficial to crop growth. These results suggest that the use of polyphosphate-accumulating microalgae as biofertilizers may alleviate the effects of a diminishing phosphorous supply. These findings can be used as a basis for additional genetic engineering to increase intracellular polyphosphate levels.

Bioactivity-Guided Fraction from Viscera of Abalone, Haliotis discus hannai Suppresses Cellular Basophils Activation and Anaphylaxis in Mice

  • Kap Seong Choi;Tai-Sun Shin;Ginnae Ahn;Shin Hye Kim;Jiyeon Chun;Mina Lee;Dae Heon Kim;Han-Gil Choi;Kyung-Dong Lee;Sun-Yup Shim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.379-386
    • /
    • 2024
  • Basophils and mast cells are specialized effector cells in allergic reactions. Haliotis discus hannai (abalone), is valuable seafood. Abalone male viscera, which has a brownish color and has not been previously reported to show anti-allergic activities, was extracted with acetone. Six different acetone/hexane fractions (0, 10, 20, 30, 40, and 100%) were obtained using a silica column via β-hexosaminidase release inhibitory activity-guided selection in phorbol myristate acetate and a calcium ionophore, A23187 (PMACI)-induced human basophils, KU812F cells. The 40% acetone/hexane fraction (A40) exhibited the strongest inhibition of PMACI-induced-β-hexosaminidase release. This fraction dose-dependently inhibited reactive oxygen species (ROS) production and calcium mobilization without cytotoxicity. Western blot analysis revealed that A40 down-regulated PMACI-induced MAPK (ERK 1/2, p-38, and JNK) phosphorylation, and the NF-κB translocation from the cytosol to membrane. Moreover, A40 inhibited PMACI-induced interleukin (IL)-1β, IL-6, and IL-8 production. Anti-allergic activities of A40 were confirmed based on inhibitory effects on IL-4 and tumor necrosis factor alpha (TNF-α) production in compound (com) 48/80-induced rat basophilic leukemia (RBL)-2H3 cells. A40 inhibited β-hexosaminidase release and cytokine production such as IL-4 and TNF-α produced by com 48/80-stimulated RBL-2H3 cells. Furthermore, it's fraction attenuated the IgE/DNP-induced passive cutaneous anaphylaxis (PCA) reaction in the ears of BALB/c mice. Our results suggest that abalone contains the active fraction, A40 is a potent therapeutic and functional material to treat allergic diseases.