• 제목/요약/키워드: Bio mechanics

검색결과 49건 처리시간 0.023초

원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출- (Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object-)

  • 김시찬;최동엽;황헌
    • Journal of Biosystems Engineering
    • /
    • 제26권1호
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF

Development of a Real-Time Soil Moisture Meter using Oscillation Frequency Shift Method

  • Kim, Ki-Bok;Lee, Nam-Ho;Lee, Jong-Whan;Lee, Seoung-Seok;Noh, Sang-Ha
    • Agricultural and Biosystems Engineering
    • /
    • 제2권2호
    • /
    • pp.63-68
    • /
    • 2001
  • The objective of this study was to develop a real-time soil moisture meter using RF impedance. The impedance suchas capacitance and resistance (or conductance) was analyzed using parallel cylinder type capacitance probe(C-probe) and Q-meter (HP4342). The capacitance and conductance of soil increased as volumetric water content increased. The 5 MHz of modified Colpitts type crystal oscillator was designed to detect the capacitance change of the C-probe with moist soil. A third order polynomial regression model was proposed to describe the relationship between RF impedance and volumetric water content. The prototype real time moisture meter consisted of the C-probe, sample container, oscillator, frequency counter and related signal processing units. The calibration equation for measurement of volumetric moisture content of soil was developed and validated. The correlation coefficient and root mean square error between measured volumetric water content by oven method and predicted values by prototype moisture meter for unknown soil samples were 0.984 and 0.032$cm^3$$cm\^3$, respectively.

  • PDF

동적 성대 모델을 이용한 후두 내 유동 및 음향장에 대한 수치 연구 (Computation of Laryngeal Flow and Sound through a Dynamic Model of the Vocal Folds)

  • 배영민;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.21-24
    • /
    • 2008
  • The present study numerically investigates the glottal airflow characteristics as well as acoustic features of phonation fully coupled with dynamic behavior of vocal folds. The vocal folds are described by a low-dimensional body-covered model characterized by bio-mechanical parameters such as glottal width, vocal folds stiffness, and subglottal pressure. The flow in the vocal tract is modeled as an incompressible, axisymmetric form of the Navier-Stokes equations (INS), while the acoustic field is predicted by the linearized perturbed compressible equations (LPCE). The computed result shows that a two-mass model of vocal folds is sufficient to reproduce temporal variations in oral airflow and glottis motion produced by female speakers. It is also found that i) the glottal width has a significant effect on the amplitude of glottal flow, and thus on the amplitude of acoustic wave in the vocal tract, ii) the vocal fold tension is the main control parameter for the fundamental frequency of phonation, iii) the subglottal pressure plays an appreciable role on reproduction of the self-sustained oscillation of vocal folds, and iv) the strength of pulsating airflow and vortical structures are primarily affected by glottal width and subglottal pressure, and are closely related to pitch, loudness, and voice quality. Finally, more comprehensive explanation about the difference between one- and two-mass models is presented with discussion of effectiveness of vocal folds oscillation and voice quality.

  • PDF

Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core

  • Ahmad B.H. Kueh;Juin-Hwee Tan;Shukur Abu Hassan;Mat Uzir Wahit
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.755-764
    • /
    • 2023
  • The article examines the impact response of the sandwich beam furnished by a novel bilayer core as inspired by the woodpecker's head architecture under different repeatedly exerted low-velocity impact loadings by employing the finite element package, ABAQUS. The sandwich beam forms four essential parts comprising bottom and top carbon fiber reinforced polymer laminates encasing bilayer core made of laterally arched solid hot melt adhesive material and aluminum honeycomb. Impact loadings are implemented repeatedly with a steel hemisphere impactor for various impact energies, 7.28 J, 9.74 J, and 12.63 J. Essentially, the commonly concentrated stresses at the impact region are regulated away by the arched core in all considered cases thus reducing the threat of failure. The sandwich beam can resist up to 5 continual impacts at 7.28 J and 9.74 J but only up to 3 times repeated loads at 12.63 J before visible failure is noticed. In the examination of several key impact performance indicators under numerous loading cases, the proposed beam demonstrates favorably up to 1.3-11.2 higher impact resistance efficacies compared to existing designs, therefore displaying an improvement in repeated impact resistance of the new design.

Prediction of Binding Free Energy Calculation Using Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) Method in Drug Discovery: A Short Review

  • Kothandan, Gugan;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제5권4호
    • /
    • pp.216-219
    • /
    • 2012
  • Structure-based drug design possibly benefit from in silico methods that precisely predict the binding affinity of small molecules to target macromolecules. There are many limitations arise from the difficulty of predicting the binding affinity of a small molecule to a biological target with the current scoring functions. There is thus a strong interest in novel methodologies based on MD simulations that claim predictions of greater accuracy than current scoring functions, helpful for a regular use designed for drug discovery in the pharmaceutical industry. Herein, we report a short review on free energy calculations using MMPBSA method a useful method in structure based drug discovery.

코 내부 유로(비강) 내부 유동의 PIV해석 (Particle Image Velocimetry Measurements in Nasal Airflow)

  • 김성균
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.811-816
    • /
    • 2002
  • For the first time, airflow in the nasal cavity of a normal Korean adult is investigated experimentally by PIV measurement. Nasal airflow can be subdivided into two interrelated categories; nasal airflow resistance and heat and mass transfer between the air stream and the walls of the nasal cavity. In this study, thanks to a new method for the model casting by a combination of the rapid prototyping and curing of clear silicone. a transparent rectangular box containing the complex nasal cavity can be made fur PIV experiments. The CBC PIV algorithm is used for analysis. Average and RMS distributions are obtained for inspirational and expiration nasal airflows. Data fer the airflow at the end of meatuses are obtained for the first time. Comparisons between western and Korean nasal airflows are appreciated. Due to the difference in geometry of the frontal part of nasal cavity, the flow near nares shows the difference.

Electrochemical Response of Polymer Actuators using Finite Element Formulation and ANSYS/Emag

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.369-375
    • /
    • 2010
  • The two-dimensional finite element formulation for the basic field equations governing electrochemical responses of ionic conducting polymer-metal composite(IPMC) actuators is proposed in the present study. Biaxial deformation of a platinum plated Nafion actuator having 4 electrodes is dominated by electro-osmosis of hydrated ions and self-diffusion of free water molecules. Some numerical studies for IPMC actuators with electric field are carried out in order to show the validity of the proposed formulation and electric field analysis for the initial condition of total charge distribution are conducted using commercial code ANSYS/Emag.

이공계 인력의 미래 유망직업 연구동향: 한국.미국.호주의 직업전망을 중심으로 (Trends for the Promising Career of Science and Engineering Workforce: Job Outlook of Korea.USA.Australia)

  • 한지영
    • 공학교육연구
    • /
    • 제15권5호
    • /
    • pp.140-150
    • /
    • 2012
  • The purpose of this study was to compare and analysis researches related the promising career and job outlook and to provide the direction for job choice to engineering students. Literature review and expert council were used to achieve the objectives of study. The result of this study was analyzed that these jobs were promising, that is, environmental scientist and specialist, earth scientist and hydrologist(education and research related career), architecture and architectural engineer, civil engineer, landscape technician, land surveyor map production expert photo surveyor surveying technician(construction related career), material engineer (mechanics and material related career), mine and geology engineer(chemistry, fiber and environment related career), computer system design and analyst, system software engineer, application software engineer, web specialist, and computer support specialist (electrical and telecommunication related career) and food engineer(food related career). In addition, health silver specialist, bio biomedical engineer, renewable energy specialist etc. were promising by considering social and economic trend for demographic change like aging and green growth.

Modelling the capture of spray droplets by barley

  • Cox, S.J.;Salt, D.W.;Lee, B.E.;Ford, M.G.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.127-140
    • /
    • 2002
  • This paper presents some of the results of a project whose aim has been to produce a full simulation model which would determine the efficacy of pesticides for use by both farmers and the bio-chemical industry. The work presented here describes how crop architecture can be mathematically modelled and how the mechanics of pesticide droplet capture can be simulated so that if a wind assisted droplet-trajectory model is assumed then droplet deposition patterns on crop surfaces can be predicted. This achievement, when combined with biological response models, will then enable the efficacy of pesticide use to be predicted.

Wastewater process modeling

  • Serdarevic, Amra;Dzubur, Alma
    • Coupled systems mechanics
    • /
    • 제5권1호
    • /
    • pp.21-39
    • /
    • 2016
  • Wastewater process models are the essential tools for understanding relevant aspects of wastewater treatment system. Wastewater process modeling provides more options for upgrades and better understanding of new plant design, as well as improvements of operational controls. The software packages (BioWin, GPS-X, Aqua designer, etc) solve a series of simulated equations simultaneously in order to propose several solutions for a specific facility. Research and implementation of wastewater process modeling in combination with computational fluid dynamics enable testing for improvements of flow characteristics for WWTP and at the same time exam biological, physical, and chemical characteristics of the flow. Application of WWTP models requires broad knowledge of the process and expertise in modeling. Therefore, an efficient and good modeling practice requires both experience and set of proper guidelines as a background.