• Title/Summary/Keyword: Bio Sensors

Search Result 326, Processing Time 0.025 seconds

Excitation Frequency Characteristics of a Conductive Fabric Sensor Using the Bio-impedance for Estimating Knee Joint Movements (슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유 센서의 여기 주파수별 특성 평가)

  • Lee, Byung-Woo;Lee, Chung-Keun;Kim, Jin-Kwon;Jeong, Wan-Jin;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1427-1433
    • /
    • 2011
  • This study describes a conductive fabric sensor and determines an optimum excitation frequency of the sensor to evaluate knee joint movements. Subjects were composed of 15 males (age: $30.7{\pm}5.3$) with no known problems with their knee joints. The upper side of subjects' lower limbs was divided into two areas and the lower side of subjects' lower limbs was divided into three areas. The sensors were attached to 1 for 3 spot from a hip joint and to 3 for 4 spot from a knee joint which are the optimum conductive fabric sensor configuration to evaluate knee joint movements. As a result, the optimum excitation frequency for evaluating knee joint movements using conductive fabric sensors was 25 kHz. Average and standard deviation of bio-impedance changes from 15 subjects were $92.1{\pm}137.2{\Omega}$ at 25 kHz. The difference of bio-impedance changes between 25 kHz and 50 kHz was statistically significant (p<0.05) and the difference of bio-impedance changes between 25 kHz and 100 kHz was also statistically significant (p<0.001). These results showed that conductive fabric sensors are more sensitive to measure bio-impedance for evaluating knee joint movements as an excitation frequency decreases.

Characteristics of Protein G-modified BioFET

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.226-229
    • /
    • 2011
  • Label-free detection of biomolecular interactions was performed using BioFET(Biologically sensitive Field-Effect Transistor) and SPR(Surface Plasmon Resonance). Qualitative information on the immobilization of an anti-IgG and antibody-antigen interaction was gained using the SPR analysis system. The BioFET was used to explore the pI value of the protein and to monitor biomolecular interactions which caused an effective charge change at the gate surface resulting in a drain current change. The results show that the BioFET can be a useful monitoring tool for biomolecular interactions and is complimentary to the SPR system.

Triboelectrification based Multifunctional Tactile Sensors

  • Park, Hyosik;Kim, Jeongeun;Lee, Ju-Hyuck
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.139-144
    • /
    • 2022
  • Advanced tactile sensors are receiving significant attention in various industries such as extended reality, electronic skin, organic user interfaces, and robotics. The capabilities of advanced tactile sensors require a variety of functions, including position sensing, pressure sensing, and material recognition. Moreover, they should comsume less power and be bio-friendly with human contact. Recently, a tactile sensor based on the triboelectrification effect was developed. Triboelectric tactile sensors have the advantages of wide material availability, simple structure, and low manufacturing cost. Because they generate electricity by contact, they have low power consumption compared to conventional tactile sensors such as capacitive and piezoresistive. Furthermore, they have the ability to recognize the contact material as well as execute position and pressure sensing functions using the triboelectrification effect. The aim of this study is to introduce the progress of research on triboelectrification-based tactile sensors with various functions such as position sensing, pressure sensing and contact material recognition.

Development of Smart Healthcare Wear System for Acquiring Vital Signs and Monitoring Personal Health (생체신호 습득과 건강 모니터링을 위한 스마트 헬스케어 의복 개발)

  • Joo, Moon-Il;Ko, Dong-Hee;Kim, Hee-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.808-817
    • /
    • 2016
  • Recently, the wearable computing technology with bio-sensors has been rapidly developed and utilized in various areas such as personal health, care-giving for senior citizens who live alone, and sports activities. In particular, the wearable computing equipment to measure vital signs by means of digital yarns and bio sensors is noticeable. The wearable computing devices help users monitor and manage their health in their daily lives through the customized healthcare service. In this paper, we suggest a system for monitoring and analyzing vital signs utilizing smart healthcare clothing with bio-sensors. Vital signs that can be continuously acquired from the clothing is well-known as unstructured data. The amount of data is huge, and they are perceived as the big data. Vital sings are stored by Hadoop Distributed File System(HDFS), and one can build data warehouse for analyzing them in HDFS. We provide health monitoring system based on vital sings that are acquired by biosensors in smart healthcare clothing. We implemented a big data platform which provides health monitoring service to visualize and monitor clinical information and physical activities performed by the users.

The Plug-in Module for Simultaneous Monitoring of Multi Bio-signal in Wearable Devices (착용형 단말에서 다수 생체신호의 동시 측정을 가능하게 하는 플러그인 모듈)

  • Choi, Moon Sik;Choi, Dong Jin;Kang, Soon Ju
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.195-200
    • /
    • 2016
  • With development of wearable devices, there is an increased interest in bio-signal monitoring techniques that can measure the user's health condition. However, embedding several bio-signal sensors in one wearable device has some inherent problems in terms of limited resources such as its size. Furthermore, such problem also arise when new bio-signal sensors are added. In this paper, we introduced the Bio-Cradle, which is a Plug-in module that can transfer the biological signals in real time from the accelerometer, ECG, or PPG sensor to other wearable devices at the request from the user of wearable devices. When the Bio-Cradle plugged in to the other device, it can transfer several synchronized bio-signals regardless of the type of device.

Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature (힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계)

  • 김종호;이상현;권휴상;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

Bio-MAC: Optimal MAC Protocol for Various Bio-signal Transmission in the WBSN Environment (Bio-MAC: WBSN환경에서 다양한 생체신호 전송을 위한 최적화된 MAC Protocol)

  • Jang, Bong-Mun;Ro, Young-Sin;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.423-425
    • /
    • 2007
  • In this paper, Medium Access Control(MAC) protocol designed for Wireless Body area Sensor Network(Bio-MAC) is proposed, Because in WBSN, the number of node is limited and each node has different characteristics. Also, reliability in transmitting vital data sensed at each node and periodic transmission should be considered so that general MAC protocol cannot satisfy such requirements of biomedical sensors in WBSN. Bio-MAC aims at optimal MAC protocol in WBSN. For this, Bio-MAC used Pattern -SuperFrame, which modified IEE E 802.15.4-based SuperFrame structurely. Bio-MAC based on TDMA uses Medium Access-priority and Pattern eXchange -Beacon method for dynamic slot allocation by considering critical sensing data or power consumption level of sensor no de etc. Also, because of the least delay time. Bio-MAC is suitable in the periodic transmission of vital signal data. The simulation results demonstrate that a efficient performance in WBSN can be achieved through the proposed Bio-MAC.

  • PDF

Development of u-Healthcare Agent System using of 3-Axis Accelerometer Sensor (3축 가속도 센서를 이용한 u-헬스케어 에이전트 시스템 개발)

  • Choi, Dong-Oun;Kim, Jin-Sung;Song, Haeng-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.98-105
    • /
    • 2010
  • Health of the people involved in blood sugar, blood pressure, activity, and using bio-sensors to obtain biometric information, the system for monitoring health research for development is a lot. This paper analyzes the bio information by monitoring the u-health care agent system was developed. Activity measurement technology that uses 3-axis accelerometer sensor. 3-axis acceleration sensors, using information obtained from activity to activity analysis to calculate the exact algorithm was developed. More accurate than the existing system to calculate the calorie consumption, it is stored in the database management. and you can check your health status using of activity and bio-information.

Monitoring Pig Body Temperature Using Infrared Sensors

  • Jang, Jin Cheol;Lee, Min Ho;Lee, Jun Yeop;Choi, Hee Chul;Choi, Dong Yun;Kim, Hyeok Ju;Kim, Hyeon Tae
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.368-372
    • /
    • 2015
  • Purpose: The purpose of this study is to verify the feasibility of using an infrared sensor to measure the body temperature of a sow. We first conducted experiments on three pigs by using three infrared sensors and one indoor temperature sensor. Methods: The three infrared sensors were installed inside our model house and were used to take temperature measurements per second of the backs of the pigs. While feeding, the temperatures of the backs of the pigs were measured at distances of 10 cm, 20 cm, and 30 cm from the infrared sensors. Results: We concluded that the relation between the temperature of the pigs' backs and the indoor temperature was y =0.549x + 18.459 at a measuring distance of 30 cm. The relation was y = 0.645x + 15.461 for a distance of 20 cm and y = 0.760x + 11.913 for a distance of 10 cm. We found high correlation between the indoor temperature and the temperature of the pigs' backs. Conclusions: It is possible to use an infrared thermometer to monitor the temperature of pigs' backs. This system seems to be feasible and effective in monitoring pig temperature. The use of an infrared thermometer will also make daily monitoring easy. In later experiments, the possibility of developing a system that can determine if an error can be corrected by using infrared sensor is explored by considering humidity variables.

Implementation of Optical Sensor based on Block Surface Wave and Diffraction Grating Profile (Block 표면파와 회절 격자구조에 기초한 광학 센서의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.143-148
    • /
    • 2021
  • A systematic study of Bloch surface wave (BSW), which is created by guided mode resonance (GMR) of dielectric multilayer structures with a grating profile, is presented to analyze the sensing performance of bio-sensors. The effect of structural parameters on optical behavior is evaluated by using Babinet's principle and modal transmission-line theory. The sensitivity of designed bio-sensors is proportional to the grating constant at wavelength spectrum, and inversely proportional to the normal wave vector of incident electromagnetic wave at angular spectrum. Numerical results for two devices with SiO/SiO2 and TiO2/SiO2 multilayer dielectric stacks are presented, showing that BSW can be exploited for the realization of efficient diffraction-based bio-sensors from infrared to visible-band range.