• Title/Summary/Keyword: Bio Informatics

Search Result 580, Processing Time 0.024 seconds

The 1H and 13C NMR Data of 19 Methoxyflavonol Derivatives

  • Park, Young-Hee;Moon, Byoung-Ho;Lee, Eun-Jung;Hong, Sun-Hee;Lee, Sun-Hee;Lim, Yoong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.81-84
    • /
    • 2008
  • In the present study, we report 1H and 13C NMR data of 19 methoxyflavonol derivatives with different substitution patterns on A- and B-ring. In addition, the influence of the methoxy substituents in A- and B-ring on the 1H and 13C NMR chemical shifts is discussed: the 1H and 13C chemical shifts of and the number of methoxyl groups provided information allowing elimination of many structural isomers from consideration and in certain instances greatly simplified structural elucidation.

Characterization of Uridine-Diphosphate Dependent Flavonoid Glucosyltransferase from Oryza sativa

  • Hong, Byoung-Seok;Kim, Jeong-Ho;Kim, Na-Yeon;Kim, Bong-Gyu;Chong, You-Hoon;Ahn, Joong-Hoon
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.870-874
    • /
    • 2007
  • We cloned a uridine-diphosphate dependent glycosyl-transferase RUGT-10 from Oryza sativa. The recombinant enzyme was expressed by glutathione-S transferase gene fusion system in Escherichia coli. RUGT10 showed different regioselectivity depending on the structures of substrates (e.g. flavanone, flavonol, and flavone). Apparently, flavanone such as naringenin and eriodictyol gave one 7-O-glucoside while flavone and flavonol gave more than two products with preferential glucosylation position of hydroxyl group at C-3 position.

Antimicrobial Effects of Flavone Analogues and Their Structure-Activity Relationships

  • Young, Jung-Mo;Park, Young-Hee;Lee, Yong-Uk;Kim, Ho-Jung;Shim, Yhong-Hee;Ahn, Joong-Hoon;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.530-533
    • /
    • 2007
  • It has been well known that the use of Saccharomyces cerevisiae can cause fungemia in critically ill patients and flavone shows an antimicrobial effect on S. cerevisiae. Therefore, we have investigated the activities of thirteen flavone analogues on S. cerevisiae in our studies. Because flavonoids including flavones have antioxidative effects, we try to carry out the activity studies of flavone analogues in vitro and in vivo. In addition, the relationships between the structures of flavone analogues and their biological activities, such as antimicrobial and antioxidative effects, were elucidated using Comparative Molecular Field Analysis calculations. Of the flavone analogues tested here, 3,2'-dihydroxyflavone showed both good antimicrobial and antioxidative activities.