• Title/Summary/Keyword: Bio Ethanol

Search Result 617, Processing Time 0.036 seconds

Bioethanol Production Using Lignocellulosic Biomass - review Part I. Pretreatments of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.1-14
    • /
    • 2010
  • Bio-ethanol is a promising alternative energy source for reducing both consumption of crude oil and environmental pollution from renewable resources like lignocellulosic biomass such as wood, forest residuals, agricultural leftovers and urban wastes. Based on current technologies, the cost of ethanol production from lignocellulosic materials is relatively high, and the main challenges are the low yield and high cost of the hydrolysis process. Development of more efficient pretreatment technology (physical, chemical, physico-chemical, and biological pretreatment), integration of several microbiological conversions into fewer reactors, and increasing ethanol production capacity may decrease specific investment for ethanol producing plants. The purpose of pretreatment of lignocellulosic material is to improve the accessible surface area of cellulose for hydrolytic enzymes and enhance the conversion of cellulose to glucose and finally high yield ethanol production which is economic and environmental friendly.

Inhibitory activities on biological enzymes of extracts from Oplismenus undulatifolius (주름조개풀(Oplismenus undulatifolius) 추출물의 생리활성 효소 억제 효과)

  • Lee, Eun-ho;Kim, Byung-Oh;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • The phenolic contents which were extracted with water and 70% ethanol from O. undulatifolius were 7.7, 10.1 mg/g, respectively. The 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity of water and ethanol extracts were 78, 82% at $50{\mu}g/mL$ phenolics, respectively. The 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization activity were 92, 76% at $100{\mu}g/mL$ phenolics. Antioxidant protection factor in water and ethanol extracts at $200{\mu}g/mL$ phenolics were 1.51 and 2.08 PF, respectively. Thiobarbituric acid reactive substance were 84% in water extracts and 99% in ethanol extracts at $50{\mu}g/mL$ phenolics, respectively. The inhibition activity on ${\alpha}-Glucosidase$ was 44% in ethanol extracts at $200{\mu}g/mL$ phenolics. The inhibition activity on ${\alpha}-amylase$ was 37-88% in water extracts at $50-200{\mu}g/mL$ phenolics. The tyrosinase inhibition activity as whitening effect were 82% in ethanol extracts. The elastase inhibition activity were 4, 61% in water and ethanol extracts, respectively. The collagenase inhibition activity of antiwrinkle effect showed an excellent wrinkle improvement effect as 39% in water extracts and 67% in ethanol extracts at $200{\mu}g/mL$ phenolics, respectively. The hyaluronidase inhibition activity as anti-inflammation effect of ethanol extracts was confirmed to 46% of inhibition at $200{\mu}g/mL$ phenolic. The astringent effect of water and ethanol extracts was confirmed to 13, 32% of effect at $200{\mu}g/mL$ phenolic, respectively.

Antioxidative and biological activity of extracts from Orostachys japonicus (와송(Orostachys japonicus) 추출물의 항산화 및 생리 활성)

  • Lim, Sun-Mi;Park, Hye-Jin;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.293-300
    • /
    • 2017
  • This study was designed to extracts from Orostachys japonicas were investigated to assess anti-oxidation and biological activity. Phenolic content was maximum of $10.56{\pm}0.32mg/g$ when extracted with 50% ethanol. In anti-oxidative activity, Orostachys japonicus electric donating activity was higher than 80% in both water and ethanol extract at $200{\mu}g/mL$. 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization of both water and ethanol extract was higher than 95.0% but antioxidant protection factor of water extract was higher than ethanol extract. Thiobarbituric acid reactive substance of ethanol extract was higher than water extract. For antihypertensive effect determination, angiotesin converting enzyme of water and ethanol extract showed 6.67 and 7.98% each at $200{\mu}g/mL$. Ethanol extract of $200{\mu}g/mL$ showed xanthin oxidase inhibitory effect of 60.85% but was not shown with water extract. Orostachys japonicus ethanol extract showed higher tyrosinase inhibitory activity of 64.59% which was higher than kojic acid of control indicating higher whitening effect. In anti-wrinkle effect, ethanol extract at $50-200{\mu}g/mL$ showed collagenase inhibitory effect of 75.95-85.02% which was higher than 68.91-76.64% of epigallocatechin-gallate of control group. 50% ethanol extract showed higher elastase inhibitory activity than water extract. Therefore, Orostachys japonicus extracts were identified to have high anti-wrinkle effect. These results identify anti-oxidative activity, gout prevention, whitening effect, and anti-wrinkle effect which indicate the possibility as a source for functional material.

Effect of Artemisia annua Linne callus induced by plant cell culture technology on wound healing (식물세포배양기술을 이용한 약용식물 개똥쑥 세포주 유도 및 세포주 추출물의 wound healing effect)

  • Oh, Seung Taek;Jung, Hae Soo;Cho, Moon Jin;Song, Mi Young;Moh, Sang Hyun;Seo, Hyo Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5628-5636
    • /
    • 2014
  • Currently, many countries have an interest in developing cosmetics materials using native plants. In this aspect, there is increasing need to develop cosmetics materials using native plants in our county. In the present study, calluses were induced from Artemisia annua Linne, which was highlighted because of its useful effects, such as anti-cancer, anti-fungal and anti-inflammation. Water and ethanol extractions were performed from the calluses of Artemisia annua Linne. After the mass production of Artemisia annua Linne's calluses, water and ethanol extraction was performed to examine its functional roles in healing wounds and inflammation. The differences in the effective elements were observed in the ethanol extract. The callus showed anti-inflammation activity through the suppression of the inflammation-related gene, COX-2, and ethanol extracts showed their ability to heal wounds. Overall, these results suggest that the extract of Artemisia annua Linne's calluses is a natural and environment-friendly material, and can be used as medical supplies associated with anti-inflammation and healing wounds.

A brief method for preparation of gintonin-enriched fraction from ginseng

  • Choi, Sun-Hye;Jung, Seok-Won;Kim, Hyun-Sook;Kim, Hyeon-Joong;Lee, Byung-Hwan;Kim, Joon Yong;Kim, Jung-Hyun;Hwang, Sung Hee;Rhim, Hyewon;Kim, Hyoung-Chun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.398-405
    • /
    • 2015
  • Background: Ginseng has been used as a tonic for invigoration of the human body. In a previous report, we identified a novel candidate responsible for the tonic role of ginseng, designated gintonin. Gintonin induces $[Ca^{2+}]_i$ transient in animal cells via lysophosphatidic acid receptor activation. Gintonin-mediated $[Ca^{2+}]_i$ transient is linked to anti-Alzheimer's activity in transgenic Alzheimer's disease animal model. The previous method for gintonin preparation included multiple steps. The aim of this study is to develop a simple method of gintonin fraction with a high yield. Methods: We developed a brief method to obtain gintonin using ethanol and water. We extracted ginseng with fermentation ethanol and fractionated the extract with water to obtain water-soluble and water-insoluble fractions. The water-insoluble precipitate, rather than the water-soluble supernatant, induced a large $[Ca^{2+}]_i$ transient in primary astrocytes. We designated this fraction as gintonin-enriched fraction (GEF). Results: The yield of GEF was approximately 6-fold higher than that obtained in the previous gintonin preparation method. The apparent molecular weight of GEF, determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was equivalent to that obtained in the previous gintonin preparation method. GEF induced $[Ca^{2+}]_i$ transient in cortical astrocytes. The effective dose (ED50) was $0.3{\pm}0.09{\mu}g/mL$. GEF used the same signal transduction pathway as gintonin during $[Ca^{2+}]_i$ transient induction in mouse cortical astrocytes. Conclusion: Because GEF can be prepared through water precipitation of ginseng ethanol extract and is easily reproducible with high yield, it could be commercially utilized for the development of gintoninderived functional health food and natural medicine.

Optimization of Ethanol Extraction Conditions from Propolis (a Bee Product) Using Response Surface Methodology (반응표면분석법을 이용한 프로폴리스의 에탄올 추출조건 최적화)

  • Kim, Seong-Ho;Kim, In-Ho;Kang, Bok-Hee;Lee, Kyung-Hee;Lee, Sang-Han;Lee, Dong-Sun;Cho, So-Mi K.;Hur, Sang-Sun;Kwon, Taeg-Kyu;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.908-914
    • /
    • 2009
  • A central composite design was used to optimize extraction of propolis materials using ethanol. The independent variables in extraction experiments were ethanol concentration (50, 60, 70, 80, 90%, v/v) and extraction time (1, 2, 3, 4, and 5 h). Higher ethanol concentration and shorter extraction time increased total polyphenol content, but total polyphenol concentration began to decrease when ethanol concentration was higher than 80% (v/v). Ethanol concentration was more important than extraction time in optimization of total polyphenol content in propolis extracts. Electron-donating ability increased with ethanol concentration and shorter extraction time, with ethanol concentration being of greater significance. Antioxidant ability in extracts was optimal at an ethanol concentration of 65 - 75% and with an extraction time of 2.2 - 3.6 h. Nitrite-scavenging ability was increased with use of higher ethanol concentration and shorter extraction time. Total flavonoid content was maximized with an ethanol concentration of 68 - 82% and an extraction time of 2.4 - 3.7 h. Total flavonoid content was affected by both ethanol concentration and extraction time. By superimposition of contour plots, an ethanol concentration of 72 - 82% and an extraction time of 2.2 - 3.3 h were optimal for preparation of propolis extracts.

Melanin-concentrating Hormone-1 Receptor (MCH-1) Antagonism of the Leaves Extract from Morus alba

  • Oh, Byung-Koo;Oh, Kwang-Seok;Lee, Sung-Hou;Seo, Ho-Won;Choi, Yeon-Hee;Choi, Jae-Seok;Kim, Young-Sup;Lee, Byung-Ho;Kwon, Kwang-Il;Ryu, Shi-Yong
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.27-31
    • /
    • 2009
  • The present study was performed to investigate the binding affinity of the ethanol extract from the leaves of Morus alba (EMA) and some EMA related plant materials (EMA-D, EMA-DM) for melanin-concentrating hormone-1 receptor (MCH-1) and also to examine the antagonistic effect of them for the recombinant MCH-1 receptor expressed in CHO cells. EMA, dichloromethane fraction (EMA-D) and EMA-DM exhibited high affinity for mammalian MCH receptor in receptor binding assays ($IC_{50}$ value: 2.3, 1.6 and $1.0{\mu}g/ml$, respectively). Other plant materials (MMA-D, MMA-DM) obtained from methanol extracts from the leaves of Morus alba (MMA) also exhibited high affinity for mammalian MCH receptor, even though the $IC_{50}$ values of them were lower than those of EMA-D and EMA-DM. In Chinese hamster ovary (CHO) cells expressing human MCH-1, EMA-DM and EMA-D significantly inhibited MCH-induced intracellular $Ca^{2+}$ increase ($IC_{50}$ values: 16.5 and $22.7{\mu}g/ml$, respectively). These results clearly indicate that the ethanol extract from the leaves of Morus alba (EMA) and some EMA related plant materials (EMA-D, EMA-DM) are novel selective MCH-1 receptor antagonist, respectively.

Pervaporation Separation of Water-Ethanol Mixture Using Crosslinked PVA/PSSA_MA/TEOS Hybrid Membranes (PVA/PSSA_MA/TEOS 막을 이용한 물/에탄올 계의 투과증발 분리)

  • Rhim, Ji-Won;Lee, Byung-Seong;Kim, Dae-Hoon;Yoon, Seok-Won;Im, Hyeon-Soo;Moon, Go-Young;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.44-52
    • /
    • 2008
  • Pervaporation separation for water-ethanol mixtures has been carried out using crosslinked poly(vinyl alcohol) (PVA) membranes with poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) and at which tetraethylorthosilicate (TEOS) was introduced. The concentration of PSSA_MA was fixed 7 wt% over PVA and the TEOS contents, 3, 5, and 7 wt%, were varied against PVA. The composition of the feed mixtures were 10, 20, 30 and 50 wt% of water in it. PVA/PSSA_MA/5 wt% TEOS membrane showed the separation factor, 1730 and the permeability, $16.3g/m^2{\cdot}hr$ for water : ethanol = 10 : 90 at $50^{\circ}C$.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Antioxidant Activity and Whitening Effect of Forsythiae Fructus Extracts (연교 추출물의 항산화활성 및 미백 효과)

  • Yang, Seo-Jin;Choe, Tae-Boo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.472-477
    • /
    • 2011
  • The Forsythiae Fructus is an oriental medicine containing various lignans. In this study, the Forsythiae Fructus were extracted by hot water (Sample 1), hot water after bio-conversion using Lactobacillus strain (Sample 2-LP2, 2-LA, 2-LC, 2-LL, 2-BL and 2-LM) and 70% ethanol (Sample 3). Total polyphenol and flavonoid contents were improved by bio-conversion process using Lactobacillus strain, compared to water extract. Especially, sample 2-LL and 2-LA which had shown the high total polyphenol and flavonoid content in antioxidant activity. Also, sample 2-LL and 2-LA showed higher melanin generation inhibitory activity as of 55%, 53% in maximum extract concentration of $100{\mu}g/m{\ell}$. In the anti-inflammation test of the Forsythiae Fructus extracts, nitric oxide (NO) synthesis was inhibited. Specially, both 70% Forsythiae Fructus ethanol extract and sample 2-BL which have shown the relatively higher 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging and superoxide dismutase (SOD) like activities. In conclusion, the Forsythiae Fructus extracts with bio-conversion process has effect of skin whitening and anti-inflammation activity than other extracts. It could be used as a valuable materials for functional cosmetics.