• Title/Summary/Keyword: Binuclear

Search Result 63, Processing Time 0.019 seconds

Epoxidation of Olefins by Iodosylbenzene Catalyzed by Non-Porphyrin Metal Complexes

  • Nam Wonwoo;Baek Seung Joong;Kazuko I. Liao;Joan Selverstone Valentine
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1112-1118
    • /
    • 1994
  • Epoxidation of olefins has been studied using iodosylbenzene (PhIO) as the terminal oxidant and binuclear and mononuclear complexes of $Mn^{2+}$, $Co^{2+}$, and $Cu^{2+}$ as catalysts. Epoxides were the predominant products with trace amounts of allylic oxidation products, and the metal complexes were found to be effective catalysts in the epoxidation reactions. The reactivity of binuclear copper complexes was greater than that of the mononuclear copper complexes, whereas the binuclear and mononuclear complexes of $Mn^{2+}$ and $Co^{2+}$ showed similar reactivities. The nature of the ligands bound to copper did not influence the reactivity of the binuclear copper complexes so long as copper ions were held in close proximity. A metal-iodosylbenzene complex, such as suggested previously for Lewis acidic metal complex-catalyzed epoxidation by iodosylbenzene, is proposed as the active epoxidizing species. Some mechanistic aspects are discussed as well.

Solid-State $^{31}P$ NMR Chemical Shielding Tensors in Binuclear Platinum Diphosphite Complexes

  • 우애자;Leslie G. Butler
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.457-460
    • /
    • 1996
  • The principal elements of the 31P NMR chemical shielding tensors have been determined for three binuclear platinum diphosphite complexes, K4[Pt2(P2O5H2)4·2H2O ("Pt2"), K4[Pt2(P2O5H2)4Cl2]·2H2O ("Pt2Cl2"), and K4[Pt2(P2O5H2)4Br2]·2H2O ("Pt2Br2"), by using a Herzfeld-Berger graphical method for interpreting the 31P MAS spectrum. The orientations of 31P chemical shielding tensor relative to the molecular axis system are partially assigned with combination of the longitudinal relaxation study of HPO32- and the reference to known tensor orientations of related sites; the most chemical shielding component, δ33, is directed along the P-Pt bond axis. A discussion is given in which the experimental principal elements of the 31P chemical shielding tensor are related with the Pt-Pt bond distances in binuclear platinum diphosphite complexes.

Template Synthesis and Characterization of Binuclear Nickel(Ⅱ) and Copper(Ⅱ) Complexes of Double-ring Macrocyclic Ligands

  • Shin-Geol Kang;Soo-Kyung Jung;Jae Keun Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.219-224
    • /
    • 1991
  • New binuclear Ni(Ⅱ) and Cu(Ⅱ) complexes with various alkyl derivatives of 1,2-bis(1,3,6,8,10,13-hexaaza-1-cyclotetradecyl) ethane, in which two fully saturated 14-membered hexaaza macrocyclic subunits are linked together by an ethylene chain, have been synthesized by the one step template condensations of formaldehyde with ethylenediamine and appropriate primary alkyl amines in the presence of the metal ions. Each macrocyclic subunit of the double-ring macrocyclic complexes contains one alkyl pendant arm and has a square planar geometry with a 5-6-5-6 chelate ring sequence. The visible spectra and oxidation properties indicate that the metal-metal interaction of the binuclear complexes are not significant. Synthesis, characterization, and the properties of the complexes are presented.

Properties of Mononuclear and Binuclear Cu(II) Schiff Base Complexes and Oxidation of Ascorbic Acid (단핵 및 이핵성 시프염기리간드 Cu(II) 착물의 특성과 Ascorbic Acid에 대한 산화반응)

  • Kim, Sun Deuk;Lee, Young Seuk;Park, Jung Eun
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.558-564
    • /
    • 2000
  • Mononuclear schiff base ligand N,N'-bissalicylidene-1,2-phenylenediamine(BSPD) and binuclear schiff base ligands N,N',N',N'''-tetrasalicylidene-3,3',4,4'-tetraaminodiphenyl-methane (TSTM), N,N',N'',N'''-tetrasalicylidene-3,3'-diaminobenzidine (TSDB) have been synthesized. Proton dissociation constants of the ligands were determined by potentiometric method. The synthesized ligands and complexes formed with Cu(II) ion. These complexes were investigated by cyclic voltammetry and differential pulse voltammetry. The results revealed two step diffusion controlled redox process. The mononuclear complex Cu(II)-BSPD and binuclear complexes $Cu(II)_2$-TSDB and $Cu(II)_2$-TSTM were used in the oxidation reaction of ascorbic acid. The reaction rates were in the order of $Cu(II)_2$-TSTM>$Cu(II)_2$-TSDB>Cu(II)-BSPD, indicating that the binuclear $Cu(II)_2$-TSTM complex had the fastest values.

  • PDF