• Title/Summary/Keyword: Bingham

Search Result 224, Processing Time 0.022 seconds

Rheological Consideration of Sub-micron Sized Hollow Polyaniline Malonate Salts Suspension under the Electric Field

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.8 no.1
    • /
    • pp.7-10
    • /
    • 2007
  • The rheological property of hollow PANI malonate suspension in silicone oil was investigated by varying the electric fields and shear rates, respectively. The hollow PANI malonate susepnsion showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of chains upon application of an electric field. The shear stress for the hollow PANI malonate suspension exhibited an electric field power of 0.90. On the basis of the experimental results, the newly synthesized hollow PANI malonate suspension was found to be an anhydrous ER fluid.

Electrorheological Properties of Chitin and Chitosan Suspensions

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.8-12
    • /
    • 2005
  • The electrorheological properties pertaining to the electrorheological (ER) bebaviour of chitin and chitosan suspensions in silicone oil were investigated. Chitosan suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field, while chitin suspension acted as a Newtonian fluid. The difference in behaior results from the difference in the conductivity of the chitin and chitosan particles, even though they have a similar chemical structure. The shear stress for the chitosan suspension exhibited a linear dependence on the volume fraction of particles and a 1.18 power of the electric field. The experimental results for the chitosan suspension correlated with the conduction model for ER response.

Magnetorheological Finishing (자성유체를 이용한 연마)

  • 신영재;이응숙;황경현;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.775-778
    • /
    • 2000
  • Magnetorheological Finishing(MRF) is a newly developed and recently commercialized for finishing optical components. The magnetorheological fluid consists of a water based suspension of carbonyl iron, nonmagnetic polishing abrasives, and small amounts of stabilizer. Theoretical analysis of MRF, based on Bingham lubrication theory, is illustrated and a correlation between surface shear stress on the workpiece and material removal is obtained.

  • PDF

Field-Dependent Characteristics of ER Shock Damper (ER 유체를 이용한 충격절연 댐퍼의 특성 연구)

  • 송현정;최승복;김재환;김경수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.109-114
    • /
    • 2001
  • This paper presents field-dependent dynamic characteristics of a shock damper featuring an electro-rheological(ER) damper. A cylindrical type of the shock damper is designed and manufactured on the basis of the field-dependent Bingham model. The damping force is then measured with respect to the piston velocity at various electric fields. The measured damping force is incorporated with the 1DOF shock system to analyze the shock isolation performance.

  • PDF

가변댐퍼의 성능해석

  • 최용빈;박우철;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.227-231
    • /
    • 1992
  • 본 연구에서는 ER(electro-rheological) 유체을 이용한 가변댐퍼(variable damper)를 제안했다. 전기장(electric field) 부하시 Bingham특성을 갖는 ER유체는 전기장에따라 항복전단응력이 변하기 때문에이를 이용하여 댐핑력을 제어할 수 있다. 피스톤의 상하압력차가 전기장의 함수이기 때문에 기존의 비능동 혹은 능동형 댐퍼에서 필요로하는 복잡한 밸브시스템이 필요없으며, 따라서 구조면에서 매우 간단하게 설계될 수 있고, 반응시간 또한 매우 빠르다. 간단한 현가정치 모델을 설정 하여제안된 ER 댐퍼의 효율성과 우수성을 주파수 및 시간 영역에서 해석하였다.

Synthesis and Electrorheological Effect of the Suspensions Composed of Nano Sized Hollow Polyaniline Derivatives

  • Choi Ung-Su
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.18-21
    • /
    • 2006
  • The electrorheology of hollow PANI derivative suspensions in silicone oil was investigated by varying the electric fields and shear rates, respectively. The hollow PANI derivative susepnsions showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of chains upon application of an electric field. The shear stress for the hollow PANI succinate suspension exhibited an electric field power of 0.67. On the basis of the experimental results, the newly synthesized hollow PANI derivative suspensions were found to be an anhydrous ER fluid.

Analysis of ground reinforcement effect using fracturing grouting (침투 및 할렬주입에 의한 지반보강 효과에 관한 연구)

  • Lee, J.S.;Lee, I.M.;Chung, H.S.;Lee, D.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.349-360
    • /
    • 2003
  • A practical modeling approach has been proposed in this study to better understand the behavior of penetration grouting which is normally applied to the jointed rock masses to increase the bearing capacity and to reduce the ground water flow into the tunnel. Based on Bingham model together with a steady-state flow of the grout, penetration model is simulated in the commercial package called UDEC and, injection pressure as well as joint thickness are found to be the main parameters to determine the range of grout spread. Another numerical model on fracturing grouting is also suggested and, in this case, the tensile strength as well as cohesion of the rock masses are proven to be the major factors to decide the fracturing mechanism of the rock masses. The reinforcement effect of the grout-reinforced rock masses is calculated from the suggested algorithm on orthotropic material model and it is found that the directional stiffness of reinforced rock masses is increased up to 3 to 4 times compared with original jointed rock masses. Future work will be concentrated on the water control around the tunnel by the grout injection and a model test will also be performed to verify the suggested methods developed in this study.

  • PDF

Study on the Compact MR fluid Brake for the Training and Sporting Equipment for Leg Rehabilitation (하지 재활운동치료 기구에 적용하기 위한 소형 MR 유체 브레이크에 관한 연구)

  • Park, Woo-Cheul;Lee, Hyun-Chang;Kim, Il-Gyoum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2878-2885
    • /
    • 2012
  • In this study, the training and sporting equipment for leg rehabilitation featuring the MR fluids is proposed. The compact MR fluid brake is designed and manufactured to apply to the rehabilitation training and sporting mechanism. The resistance characteristic of the MR fluid brake is controllable by varying the magnetic field around the fluid. Under consideration of spatial limitation, design parameters which are related with the magnetic strength are determined to maximize to a torque using finite element method. The FE analysis is performed using a commercial code, ANSYS Workbench. The proposed brake device is manufactured, and its field-dependant torque is experimentally evaluated. When the electric current is supplied, the torque of the MR fluid brake is increased and the response is very fast. Depending on the strength of the current supply, torques of the MR fluid brake also increase similar to Bingham property of MR fluid.

Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository (심층처분장 처분공 주변 굴착손상영역에 존재하는 불연속면으로의 압축 벤토나이트 침투)

  • Lee, Changsoo;Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.193-213
    • /
    • 2020
  • A mathematical model to simulate more realistically the penetration of compacted bentonite buffer installed in the deposition hole into the discontinuity in the excavation damaged zone formed at the inner wall of the deposition hole in the geological repository for spent fuel is developed. In this model, the penetration of compacted bentonite is assumed to be the flow of Bingham fluid through the parallel planar rock fracture. The penetration of compacted bentonite is analyzed using the developed model. The results show that the maximum penetration depth of compacted bentonite into the rock fracture is proportioned to the swelling pressure of saturated compacted bentonite and the aperture of rock fracture. However, it is in inverse proportion to the yield strength of compacted bentonite. The viscosity of compacted bentonite dominates the penetration rate of compacted bentonite, but has no influence to the maximum penetration depth.

Studies on The Flow Properties of Semi-Solid Dosage Forms (II) : Temperature-Dependent Flow Behavior of Vaseline (반고형제제의 유동특성에 관한 연구 (제2보) : 바셀린의 온도의존성 유동거동)

  • Kim, Jeong-Hwa;Song, Ki-Won;Jang, Gap-Shik;Lee, Jang-Oo;Lee, Chi-Ho
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.38-47
    • /
    • 1997
  • Using a concentric cylinder type, rheometer. the steady shear flow properties of vaseline were measured over the temperature range of 20~70${\circ}$C. In this paper, the shea rate and temperature dependencies of its flow behavior were investigated and the validity of some flow models was examined. In addition, the flow characteristics over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main findings obtained from this study can be summarized as follows: (1) At relatively lower temperature range, vaseline is a plastic fluid with a yield stress and its flow behavior shows shear-thinning characteristics. (2) As the temperature increases, the value of a yield stress and the degree of shear-thinning become smaller, consequently, the Newtonian flow behavior occurs at a lower shear rate range. (3) At temperature range lower than 45${\circ}$C, the flow behavior shows much stronger temperature dependence, and a larger activation energy is needed for flow. (4) The Herschel-Bulkley model is the most effective one g$^3$ to predict the flow behavior of vaseline having a yield stress. The validity of the Bingham and Casson models becomes more available with increasing temperature. The flow behavior of vaseline at temperature range higher than 45${\circ}$C can be perfectly described by the Newton model.

  • PDF