• Title/Summary/Keyword: Binding geometry

Search Result 41, Processing Time 0.034 seconds

Structure of Mixed-Anions Tris(2-pyridylmethyl)amine Mn Complex, TPAMnη2-NO3)(η-CIO4)

  • Shin, Bok-Kyu;Kim, Mi-Hyang;Han, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.417-420
    • /
    • 2007
  • Mononuclear mixed-anions Mn complex of TPAMn(η2-NO3)(η-ClO4), where TPA is tris(2-pyridylmethyl)-amine, has been synthesized and characterized. The neutral TPAMn(η2-NO3)(η-ClO4) was obtained from the reaction between Mn(NO3)2·4H2O and [H3TPA](ClO4)3 in MeOH. X-ray crystallographic structure of mononuclear TPAMn(η2-NO3)(η-ClO4) complex showed a seven-coordinated geometry with a tripodal tetradentate TPA, a terminal perchlorate and an η2-bound nitrate.

A Computational Study for Designing Electrical Contacts to MoS2 Monolayers

  • Kim, Hwi-Su;Ha, Hyeon-U
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.478-482
    • /
    • 2014
  • Graphene have renewed considerable interest in inorganic, two-dimensional materials for future electronics. However, graphene does not have a bandgap, it is limited to apply directly to transistors and logic devices. Hence, other layered materials such as molybdenum disulphide ($MoS_2$) have been investigated to address this challenge. Here, we find that the nature of contacts plays a more important role than the semiconductor itself. In order to understand the nature of $MoS_2$/metal contacts, we perform density functional theory electronic structure calculations based on linear combination of atomic for the geometry, bonding, binding energy, PDOS, LDOS and electronic structure. We choose Au as a contact metal because it is the most common contact metal. In this paper, we demonstrate $MoS_2$/Au contacts have a more promising potential in flexible nanoelectronics than $MoS_2$ itself.

  • PDF

Conformational Analysis of Sulfonylureas : Acetohexamide and Tolazamide (Sulfonylurea 유도체들의 구조분석 : Acetohexamide와 Tolazamide)

  • 정우태;강기롱;이성희
    • YAKHAK HOEJI
    • /
    • v.39 no.3
    • /
    • pp.329-336
    • /
    • 1995
  • Conformational free energy calculations using an empirical potential function and a hydration shell model(program CONBIO) were carried out on hypoglycemic agent acetohexamide and tolazamide in the unhydrated and hydrated states. The initial geometry of sulfonylureas was obtained from X-ray crystallographieal data and homologous molecular fragments. In both states, the feasible conformations were obtained from the calculations of conformational energy, conformational entropy, and hydration free energy by varying all the torsion angles of the molecules. From the calculation results, it is known that the conformations] entropy is the major contribution to stabflize the low-free-energy conformations of two sulfonylureas in both states. But, in hydrated state, the hydration does not directly affect each conformations. The intramolecular hydrogen bonding of sulfonylurea hydrogen and 7-membered nitrogen appeared to the conformations of tolazamide in both states. It is thought that the hydrogen bonding decrease steric hindrance on the receptor binding direction. The substitution of alicyclic or N-heterocyclic ring than that of carbons chain of urea moiety may be properly interaction between sulfonylureas and the putative pancreatic receptor.

  • PDF

pH-Dependent Surface-enhanced Raman Scattering Analysis of Maleimide and Succinimide on Ag Nanocolloidal Surfaces

  • Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1761-1764
    • /
    • 2008
  • The adsorption structure and binding of maleimide (MI) and succinimide (SI) on silver nanocolloidal surfaces have been comparatively investigated by means of pH-varied surface-enhanced Raman scattering (SERS). The two molecules appeared not to adsorb onto Ag surfaces at pH values below 5. The appearance of a ring ν (CH) band at ~3100 $cm^{-1}$ denoted the standing geometry of MI’s aromatic ring on Ag. The absence or weakness of in-plane vibrational modes of MI and SI also supported a perpendicular orientation of MI and SI on Ag from the electromagnetic selection rule. Density functional theory (DFT) calculations were employed to examine the vibrational frequencies of MI’s and SI’s neutral and anionic states.

Synthesis and Characterization of Dichloro and Dibromo(2-(dimethylaminomethyl)thiophene) Copper(II) Complexes

  • Kim, Young-Inn;Choi, Sung-Nak;Ro, Chul-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.549-553
    • /
    • 1994
  • The 2-(dimethylaminomethyl)thiophene (dmamt) complexes with copper(II) chloride and bromide were prepared and characterized by optical, EPR, XPS spectroscopies and magnetic susceptibility measurements. The low-energy absorption band above 850 nm and the relatively small EPR hyperfine coupling constant ($A_{//}{\simeq}$125 G) indicate the pseudotetrahedral site symmetry around copper(II) ion both in Cu(dmamt)$Cl_2$ and Cu(dmamt)$Br_2$ complexes. The higher satellite to main peak intensity of Cu $2P_{3/2}$ core electron binding energy in XPS spectra also supports the pseudotetrahedral geometry around the copper(II) ions having $CuNSX_2$ chromophores. The distortion from square-planar to pseudotetrahedral symmetry is likely to arise from the steric hindrance of the bulky dmamt ligand in the complex. Magnetic susceptibility study shows that these compounds follow Curie-Weiss law in the temperature range of 77-300 K with positive Weiss constant exhibiting the ferromagnetic interaction between copper(II) ions in solid state.

Ab Initio Studies on Proton Affinities of Substituted Oxazoles (치환 옥사졸의 양성자 친화도에 대한 ab initio 연구)

  • Lee, Hyun-Mee;Lee, Song-Eun;Chang, Mahn-Sik;Park, Byung-Kak;Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.493-500
    • /
    • 1995
  • The geometry optimization of oxazole, relevant to the binding of lexitropsin that contains this ring to the base pair (G-C sequence) of minor groove of DNA, is performed with the aid of MM+ and ab initio (Hartree-Fock) calculations. The proton affinity and electronic structure are calculated at the 6-31G and $6-31G^{\ast}$ level for the optimized geometry. The proton affinities are also studied for various substituted oxazoles with the electron-donating and -withdrawing groups to estimate the substituent effect on the proton affinities of oxazoles. It is shown that the electron-donating substituents increase the proton affinity of oxazole, while the electron-withdrawing substituents decrease it. This result can be explained with atomic charge and electron density at oxygen of substituted oxazoles.

  • PDF

DFT Studies on the Proton Affinities of Oxazole (옥사졸의 양성자 친화도에 대한 DFT 연구)

  • Lee, Hyun-Mee;Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • The oxazole plays an important role in the binding of lexitropsin to the guanine-cytosine base pair from minor groove of DNA. The geometry optimization is performed with DFT calculations for the two possible conformations of the protonated oxazole. The proton affinities are calculated at B3LYP level of theory with 6-31G* basis set for the optimized geometry. It is found that the proton affinites of the conformations in which the oxazole nitrogen is the protonation center are greater than that of the conformations in which the oxazole oxygen is the protonation center. This result is in good agreement with molecular electrostatic potential (MEP) contour map. The proton affinities are also studied for various substituted oxazoles with the electron-donating and -withdrawing groups to estimate substitutent effect on the proton affinity at the hydrogen bonding site of the oxazoles. it is shown that the electron-donating substituents increase the proton affinity of oxazole, while the electron-withdrawing substituents decrease it.

Protein structure analysis : Pharmacophore study for new insecticide target AnCE using the substrate of ACE, HHL molecule (단백질의 구조연구 : ACE의 기질 HHL을 이용한 신규 살충제 표적 AnCE에 대한 약리단 연구)

  • Lee, Jung-Kyung;Kim, Kyeong-Yee
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.3
    • /
    • pp.191-198
    • /
    • 2005
  • Hippuryl-L-histidyl-L-leucine (Hip-L-His-L-Leu, HHL) is the known substrate of ACE, which used often in inhibition kinetic study to design new inhibitor. Here we use HHL molecule as a template to predict pharmacophore which can interact with residues in active site of AnCE, new potential insecticide target protein. To explain physicochemical properties related to molecular geometry and conformational change in reaction field as well as electron density of atoms associated to pharmacophores, geometry optimization, NMR chemical shifts and natural population analysis were performed by ab initio and DFT method. Calculated NMR chemical shifts showed good agreement with the experimental ones and obtained electron densities were used for analyzing pharmacophores of corresponding atoms. Finally, we could extract aye pharmacophores related to hydrophobic aliphatic and aromatic site, hydrogen bonding donor and acceptor site and Zn binding site from the HHL molecule.

Theoretical Investigation for the Molecular Structures and Dimerization Energies for Complexes of H2O-C6H6 Dimer (물(H2O)과 벤젠(C6H6) 이합체의 분자 구조 및 결합 에너지에 관한 이론 연구)

  • Sun, Ju-Yong;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.7-16
    • /
    • 2009
  • The global minimum structures of the benzene-water, Bz-$H_2O$ and benzene-water cation complex, [Bz-$H_2O]^+$ have been investigated using ab initio and density functional theory(DFT) with very large basis sets. The highest levels of theory employed in this study are B3LYP/cc-pVQZ for geometry optimization and MP2/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ for binding energy. The harmonic vibrational frequencies and IR intensities are also determined at the various levels of theory to confirm whether the structure of water complex is affected by the presence of benzene. The binding energies of Bz-$H_2O$ (N-1) structure are predicted to be 3.92 kcal/mol ($D_e$) and 3.11 kcal/mol ($D_0$) after the zero-point vibrational energy correction at the MP2/cc-pVQZ//B3LYP/cc-pVQZ level of theory. The binding energies of [Bz-$H_2O]^+$ (C-1) structure are predicted to be 9.06 kcal/mol for $D_e$ and 7.82 kcal/mol for $D_0$ at the same level of theory.

Basis Set Superposition Error on Structures and Complexation Energies of Organo-Alkali Metal Iodides

  • Kim, Chang-Kon;Zhang, Hui;Yoon, Sung-Hoon;Won, Jon-Gok;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2228-2234
    • /
    • 2010
  • Theoretical studies have been performed to study the binding characteristics of the alkali metal iodides, M-I (M = Li, Na, K), to poly(ethylene oxide) (PEO, I), poly(ethylene amine) (PEA, II) and poly(ethylene N-methylamine) (PEMA, III) via the B3LYP method. In this study, two types of complexes, singly-coordinated systems (SCS) and doubly-coordinated systems (DCS), were considered, and dissociation energies (${\Delta}E_D$) were calculated both with and without basis set superposition error (BSSE). Two types of counterpoise (CP) approach were investigated in this work, but the ${\Delta}E_D$ values corrected by using the function CP (fCP) correction exhibited an unusual trend in some cases due to deformation of the sub-units. This problem was solved by including geometry relaxation in the CP-corrected (GCP) interaction energy. On the other hand, the effects of the BSSE on the structures were very small when the complexes were re-optimized on the CP-corrected (RCP) potential energy surface (PES), even if the bond lengths between X and $M^+$ ($d_{{X-M}^+}$) and between $M^+$ and $I^-$ ($d_{M^+-I^-}$) were slightly lengthened. Therefore, neither the GCP nor RCP corrections made much difference to the dissociation energies.