• 제목/요약/키워드: Binding Mode

검색결과 202건 처리시간 0.021초

Exploration of the Binding Mode of Indole Derivatives as Potent HIV-1 Inhibitors Using Molecular Docking Simulations

  • Balupuri, Anand;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.138-142
    • /
    • 2013
  • The HIV-1 envelope glycoprotein gp120 plays a vital role in the entry of the virus into the host cells. The crucial role of the glycoprotein suggests gp120 as potential drug target for the future antiviral therapies. Identification of the binding mode of small drug like compounds has been an important goal in drug design. In the current study we attempt to propose binding mode of indole derivatives in the binding pocket of gp120. These derivatives are reported to inhibit HIV-1 by acting as attachment inhibitors that bind to gp120 and prevent the gp120-CD4 interaction and thus inhibit the infectivity of HIV-1. To elucidate the molecular basis of the small molecules interactions to inhibit the glycoprotein function we employed the molecular docking simulation approach. This study provides insights to elucidate the binding pattern of indole-based gp120 inhibitors and may help in the rational design of novel HIV-1 inhibitors with improved potency.

Ionic Strength Dependent Binding Mode of 9-Aminoacridine to DNA

  • 김혜경;조태섭;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권4호
    • /
    • pp.358-362
    • /
    • 1996
  • The ionic strength dependent binding mode of 9-aminoacridine (9AA), a well-known DNA intercalator, to DNA is studied by flow linear dichroism, circular dichroism, fluorescence techniques and equilibrium dialysis. The DNA-bound 9AA exhibits spectral properties corresponding to the intercalative binding mode disregarding the salt concentrations; the angle between the long-axis transition moment of the 9AA molecule and DNA helix axis is calculated to be about 65°, indicating a significant deviation from the classical intercalation. At low salt concentrations, however, upwards bending curve in Stern-Volmer plot is observed (where 9AA is a fluorophore and DNA a quencher), indicating the coexistence of both static and dynamic quenching mechanisms or the existence of an additional binding site.

Binding Interactions of TMAP to Triple- and Double Helical DNA

  • Kim, Nan-Jung;Yoo, Sang-Heon;Huh, Sung-Ho
    • 한국자기공명학회논문지
    • /
    • 제10권2호
    • /
    • pp.175-187
    • /
    • 2006
  • Binding interactions between a positively charged porphyrin derivative TMAP(meso-tetra(p-trimethylanilinium-4-yl)porphyrin) and triple helical $(dT)_{12}{\cdot}(dA)_{12}{\cdot}(dT)_{12}$, as well as double helical $(dA)_{12}{\cdot}(dT)_{12}$ have been studied with NMR, UV and CD spectroscopy to obtain the detailed information about the binding mode and binding site. UV melting studies showed both DNA duplex and triple helix represented very similar UV absorption patterns upon binding TMAP, but the presence of third strand of triple helical $(dT)_{12}{\cdot}(dA)_{12}{\cdot}(dT)_{12}$, inhibited improvement in thermal stability in terms of melting temperature, $T_m$. In addition, the TMAP molecule is thought to bind to the major groove, according to CD and NMR data. But absence of the clear isosbestic point in UV absorption spectra represented that binding of TMAP to DNA duplex as well as DNA triplex did not show a single binding mode, rather complex binding modes.

  • PDF

Preparation and Oxygen Binding Properties of Ultra-Thin Polymer Films Containing Cobalt(II) meso-Tetraphenylporphyrin via Plasma Polymerization

  • Choe, Youngson
    • Macromolecular Research
    • /
    • 제10권5호
    • /
    • pp.273-277
    • /
    • 2002
  • Ultra-thin polymer films containing cobalt(II) meso-tetraphenylporphyrin(CoTPP) have been prepared by vacuum codeposition of the metal complex and trans-2-butene as an organic monomer using an inductively coupled RF glow discharge operating at 7-9 Watts. The polymer films were characterized by sorption measurements. Sorption data obtained for polymer films containing CoTPP indicate that the CoTPP molecules are capable of reversibly binding oxygen molecules. It was found that the adjacent CoTPP molecules in the aggregated metal complex phase could irreversibly share the oxygen molecules. A dispersion of the metal complex molecules in the polymer matrix was made to maintain the reversible reactivity of the metal complex molecules with oxygen in the polymer films via vacuum evaporation process. The Henry mode solubility constant, the Langmuir mode capacity constant, the amount of binding oxygen, and the dissociation equilibrium in the dual mode sorption theory were discussed.

Cobalt(III) Complexes of Various Salen-Type Ligand Bearing Four Quaternary Ammonium Salts and Their Reactivity for CO2/Epoxide Copolymerization

  • Kim, Bo-Eun;Varghese, Jobi Kodiyan;Han, Yong-Gyu;Lee, Bun-Yeoul
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.829-834
    • /
    • 2010
  • Ligand variation was carried out on a cobalt(III) complex of Salen-type ligand comprised of 1,2-cyclohexenediamine and salicylaldehyde bearing a methyl substituent on 3-position and -[$CMe(CH_2CH_2CH_2N^+Bu_3)_2$] on 5-position, which is a highly active catalyst for $CO_2$/propylene oxide copolymerization. Replacement of the methyl substituent with bulky isopropyl group resulted in alteration of the binding mode, consequently lowering turnover frequency significantly. Replacement with an ethyl group preserved binding mode and activity. Replacement of the tributylammonium unit with trihexylammonium or trioctylammonium, or replacement of 1,2-cyclohexenediamino unit with -$NC(Me)_2CH_2N$- decreased activity, even though the binding mode was unaltered.

Effect of Mode of Binding Linkage on Monolayer Assembly of Zeolite

  • Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.248-254
    • /
    • 2012
  • During the monolayer assembly of zeolite microcrystals using sonication with stacking (SS) method, the factors that govern the degree of close packing (DCP) between the microcrystals, the rate of attachment (rA) of microcrystals onto the substrate, the degree of coverage (DOC), and the binding strength (BS) between each crystal and the substrate were investigated for each mode of binding linkage (MBL). The tested MBLs were covalent linkage (CL), ionic linkage (IL), and polyelectrolyte-mediated ionic linkage (p-IL). Unlike the monolayers of zeolite crystals assembled on glass with a covalent linkage, the strong BS, very high DOC, and very high DCP do not decrease during monolayer assembly on glass through ionic linkages. This results indicate that the surface migration of crystals undergo linkage-nondestructively when crystals were attached to the substrates through ionic linkages.

Structural Insight into Dihydrodipicolinate Reductase from Corybebacterium glutamicum for Lysine Biosynthesis

  • Sagong, Hye-Young;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.226-232
    • /
    • 2016
  • Dihydrodipicolinate reductase is an enzyme that converts dihydrodipicolinate to tetrahydrodipicolinate using an NAD(P)H cofactor in L-lysine biosynthesis. To increase the understanding of the molecular mechanisms of lysine biosynthesis, we determined the crystal structure of dihydrodipicolinate reductase from Corynebacterium glutamicum (CgDapB). CgDapB functions as a tetramer, and each protomer is composed of two domains, an Nterminal domain and a C-terminal domain. The N-terminal domain mainly contributes to nucleotide binding, whereas the C-terminal domain is involved in substrate binding. We elucidated the mode of cofactor binding to CgDapB by determining the crystal structure of the enzyme in complex with NADP+ and found that CgDapB utilizes both NADH and NADPH as cofactors. Moreover, we determined the substrate binding mode of the enzyme based on the coordination mode of two sulfate ions in our structure. Compared with Mycobacterium tuberculosis DapB in complex with its cofactor and inhibitor, we propose that the domain movement for active site constitution occurs when both cofactor and substrate bind to the enzyme.

Structures of Zymomonas 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase with and without a Substrate Analog at the Phosphate-Binding Loop

  • Seo, Pil-Won;Ryu, Ho-Chang;Gu, Do-Heon;Park, Hee-Sae;Park, Suk-Youl;Kim, Jeong-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1339-1345
    • /
    • 2018
  • 2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, which catalyzes aldol cleavage and condensation reactions, has two distinct substrate-binding sites. The substrate-binding mode at the catalytic site and Schiff-base formation have been well studied. However, structural information on the phosphate-binding loop (P-loop) is limited. Zymomonas mobilis KDPG aldolase is one of the aldolases with a wide substrate spectrum. Its structure in complex with the substrate-mimicking 3-phosphoglycerate (3PG) shows that the phosphate moiety of 3PG interacts with the P-loop and a nearby conserved serine residue. 3PG-binding to the P-loop replaces water molecules aligned from the P-loop to the catalytic site, as observed in the apostructure. The extra electron density near the P-loop and comparison with other aldolases suggest the diversity and flexibility of the serine-containing loop among KDPG aldolases. These structural data may help to understand the substrate-binding mode and the broad substrate specificity of the Zymomonas KDPG aldolase.

Protein-ligand interaction investigated by HSQC titration study

  • Lee, Joon-Hwa
    • 한국자기공명학회논문지
    • /
    • 제22권4호
    • /
    • pp.125-131
    • /
    • 2018
  • Chemical shift perturbation (CSP) is a simple NMR technique for studying binding of a protein to various ligands. CSP is the only technique that can directly provide both a value for the dissociation constant and a binding site from the same set of measurements. To accurately analyze the CSP data, the exact binding mode such as multiple binding, should be carefully considered. In this review, we analyzed systematically the CSP data with multiple modes. This analysis might provide insight into the mechanism on how proteins selectively recognize their target ligands to achieve the biological function.