• Title/Summary/Keyword: Binder content

Search Result 542, Processing Time 0.027 seconds

Effect of β-Resin of Petroleum-based Binder Pitch on Density of Carbon Block (석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향)

  • Kim, Kyung Hoon;Lee, Sangmin;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.432-436
    • /
    • 2017
  • Carbon blocks were prepared by compression molding process using the mixture of isotropic cokes and binder pitches, which were reformed with different ${\beta}$-resin contents from pyrolysis fuel oil. Physical and chemical properties and also thermal behavior of binder pitches were investigated through elemental analysis, FT-IR and thermogravimetric analysis, respectively. The adhesion of binder pitches to isotropic coke particles was evaluated from SEM images of the fracture surface of carbon blocks. From these results, it is shown that the adhesion between the cokes and binder was enhanced by increasing the ${\beta}$-resin content of binder pitches. The density of the carbon block after carbonization also increased from 1.325 to $1.383g/cm^3$ by increasing the ${\beta}$-resin content of binder pitches from 1.4 to 20.1%.

Performance Characteristics of No-Fines Polymer Concrete using Recycled Coarse Aggregate with Binder Contents (결합재의 함량에 따른 순환굵은골재 사용 무세골재 폴리머 콘크리트의 성능 발현 특성)

  • Kim, Do-Heon;Jung, Hyuk-Sang;Kim, Dong-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.433-442
    • /
    • 2021
  • In this study, the properties of no-fines polymer concrete with different polymer binder contents were evaluated. The polymer concrete was formulated using a polymeric binder (unsaturated polyester resin), fly ash, and recycled coarse aggregate (60%) and crushed coarse aggregate (40%). The polymeric binder content (4.0-6.0wt.%) was used as an experimental variable because it dramatically affects both the cost-effectiveness and material properties. The results showed that the density, compressive strength, flexural strength both before and after exposure to freezing and thawing increased as the polymer binder content increased, while the absorption, void ratio, permeable voids, coefficient of permeability, and acid resistance (mass loss by acid attack) decreased as the polymeric binder content increased. In particular, even though the void ratio was 18.4% and the water permeability coefficient was 7.3mm/sec, the compressive strength and flexural strength were as high as 38.0MPa and 10.0MPa, respectively, much more significant than those of previous studies. Other properties such as absorption and acid resistance were also found to be excellent. The results appear to be rooted in the increased adhesion of the binder by adding a cross-linking agent and the surface hydrophobicity of the polymer.

The Effect of the Binder to Zeolite Thin Film Coating by Heat Treatment (열처리를 통한 제올라이트 박막 코팅 시 바인더의 영향)

  • Yoo, Young-Seok;Jo, Jun-Ho;Kim, I-Tae
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.277-282
    • /
    • 2013
  • This study is an experimental attempt to confirm the binder effect of zeolite coating on glass plate by heat treatment. As a result, zeolite was successfully formed with low concentratios of pressure, whose concentration was effective in 10% or more for thin film zeolite coating. And as the content of the binder (TEOS) in mixed coating solution was higher, the zeolite was fastened better on the surface. Above 5% content of the binder in the coating solution, TEOS hindered zeolite synthesis of the precursor and brought to zeolite capacity decrease. Furthermore, when the concentration of the precursor, sedimentation rate of the precursor was higher and the coating efficiency is reduced thereby. Therefore, the most effective concentrations of the precursor and TEOS in the coating solution was 10% and 5%, respectively. It was concluded that zeolite coating is produced by heat treatment method after dipping without hydrothermal synthesis.

A Study on the Factors Affecting the High Fluid Mortar Containing Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 함유한 고유동 모르터의 유동성상에 미치는 영향 요인에 관한 연구)

  • 김재훈;윤상천;지남용
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.29-36
    • /
    • 2002
  • High fluid concrete unlike OPC concrete is made with various material, and the phase of fresh concrete is considerably different. In order to understand fluidity phase and mix properties of high fluid concrete, concrete is required to access as suspension structure which consists of aggregate and paste. The focus of this paper is to analyze the test results and quantify the effect of mix proportions of molar and fineness modulus of ,and on the properties of fresh mortar. The effect of water-binder ratio, sand-binder ration, content; of ggbs (by mass of total cementitious materials), and various contents of water reducing agent on the yield stress and plastic viscosity of the mix is studied. Based on the experimental results, the following conclusion; can be drawn: (1) The mixing time needed (or high fluid mortar was approximately two times more than that of ordinary portland mortar. (2) The fluidity phase of mortar could be explained by yield stress of mix and the fluidity of mortar. (3) As the content of ggbs increased, yield stress of mortar was decreased and plastic viscosity of it was increased. (4) For the high fluid mortar, it was appeared that sand-binder ratio should be below 1.5.

  • PDF

Influence of a silane coupling agent on the optoelectrical properties of carbon nanotube/binder hybrid thin films

  • Han, Joong-Tark;Woo, Jong-Seok;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.90-94
    • /
    • 2011
  • We present the effect of a coupling agent on the optoelectrical properties of few-walled carbon nanotube (FWCNT)/epoxy resin hybrid films fabricated on glass substrates. The FWCNT/epoxy resin mixture solution was successfully prepared by the direct mixing of a $HNO_3$-treated FWCNT solution and epoxy resin. FWCNT/binder hybrid films containing different amounts of the coupling agent were then fabricated on UV-ozone-treated glass substrates. To determine the critical binder content ($X_c$), the effects of varying the binder content in the FWCNT/silane hybrid films on their optoelectrical properties were investigated. In this system, the $X_c$ value was approximately 75 wt%. It was found that above $X_c$, the coupling agent effectively decreased the sheet resistance of the films. From microscopy images, it was observed that by adding the coupling agent, more uniform FWCNT/binder films were formed.

Effect of Unsaturated Polyester Resin Content on Properties of PMMA Mortars (PMMA 모르타르의 성질에 미치는 불포화 폴리에스테르 수지 첨가율의 영향)

  • Choi Nak Woon;Lee Chol Woong;Kim Wan Young;So Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.332-335
    • /
    • 2004
  • Polymethyl Methacrylate(PMMA) mortars using EPS solution-based binders are prepared with various unsaturated polyester resin(UP) contents of binder, and tested for working life. heat exothorm temperature, length change. compressive strength and temperature dependence of compressive strength. As a result, the working life of PMMA mortar is lengthened with raising UP content of binder. Length change of the mortar was condensed from expansion to shrinkage with increasing UP content, and non shrinkage of the mortar is obtained at about UP content of $2.5\%$. The compressive strength of the mortar is increased with an increase in the UP content and reach maximum at UP content of $5\%$. However thermal resistance improvement of the mortar by increasing UP content was not recognized. UP resin was recommended as an effective agent for shrinkage control and strength development of PMMA mortar.

  • PDF

An Experimental Study on the Properties of High Flowing Concrete according to Water/Binder Ratio(W/B) (물결합재비에 따른 고유동콘크리트의 특성에 관한 실험적 연구)

  • 김무한;최세진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.329-335
    • /
    • 2001
  • Recently, in many laboratories and institutes it is being studied on the high flowing concrete widely, which has high fluidity, non-segregation ability and fillingability, and sometimes being applied to the construction field actually. And the fluidity properties of high flowing concrete are influenced according to the several factors ; binder content, water/binder ratio and water content etc. This is an experimental study to compare and analyze the effect of water/binder ratio and water content on the properties of high flowing concrete. For this purpose, the mix proportion of high flowing concrete according to water/binder ratio(W/B : 0.30, 0.35, 0.40, 0.45) and water content (W : 155, 165, 175, 185 kg/㎥) was selected. And then slump-flow, V-lot, L-passing test in fresh concrete, and compressive strength, freezing and thawing test in hardened concrete were peformed. According to test results, it was found that the viscosity of all those high flowing concrete with the water content 175 kg/㎥ was satisfied with 50 cm pass time of slump flow prescribed by Japanese Architectural Standard Specification (JASS 5) - from 3 to 8 seconds. And non-segregation ability of concrete with W/B 0.35 was better than the other mix proportions. Especially, the compressive strength after curing 24 hours(1 day) of all high flowing concrete was higher than that prescribed by JASS 5(50 kgf/㎠).

Characteristics of Compressive Strength Development of High Strength Cement Composites Depending on Its Mix Design (고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성)

  • Jeong, Yeon-Ung;Oh, Sung-Woo;Cho, Young-Keun;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.585-593
    • /
    • 2021
  • This study investigates the compressive strength of high-strength cement composites with 64 mixture designs and 2 curing conditions. The cement composites were designed with varying water-to-binder ratios, silica fume content to cement, and binder content per unit volume of cement composite to explore compressive strength development depending on its mix design. An increase in the water-to-binder ratio decreased the compressive strength of the composites, having consistency with the trend in normal concrete. The compressive strength increased with ages at an ambient curing temperature, but it was not identified at high-temperature curing. The compressive strength development was negligible in case that silica fume content to OPC is 15%~25%, but a decrease in the con ten t below 15% reduced compressive stren gth. It was more obvious in the specimen of low water-to-binder ratio. The specimen with 840kg/m3 of binder content per unit volume had the highest compressive strength in this study, and the decrease in binder content reduced the compressive strength of high strength cement composites in low silica fume content.

Development of Eco-friendly Pavement Material using Polyurethane Binder (폴리우레탄 바인더를 활용한 친환경 도로포장용 혼합물 개발)

  • Choi, Ji Young;An, Young Jun;Park, Hee Mun;Kim, Tae Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.113-119
    • /
    • 2013
  • PURPOSES : The objectives of this study are to develop the eco-friendly pavement material using polyurethane binder and evaluate mechanical properties of the developed binder and concrete. METHODS : The bending beam test was conducted to select the sample candidates of polyurethane binder based on the bending strength. The characteristics of viscosity, curing time, and temperature change of sample binder was examined on different temperature conditions. The mechanical properties of polyurethane binder was estimated using the dynamic modulus testing. The indirect tensile strength test was conducted on polyurethane binder concrete with different gradation and binder content for evaluating the mechanical properties of concretes. RESULTS : Based on the beading beam test, four different binder samples were prepared for estimate the mechanical properties. The viscosity of polyurethane binder tends to increase with increase of liquid temperature and the hardening phenomenon begins 10 to 15 minutes at room temperature after mixing the resin and hardener. It is observed that the dynamic modulus of binder increases as loading frequency increases and change of modulus is found to be the highest in the PU-2I binder type. The PU-2I binder concretes shows the largest value of indirect tensile strength and indirect tensile energy. CONCLUSIONS : The use of polyurethane binder as pavement materials is capable of increasing the pavement performance and reducing the detrimental environmental effect during the highway construction.

Microstructure and Flexural Strength of Hardmetals

  • Hayashi, Koji
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.119-198
    • /
    • 1994
  • The characteristics of various important microstructural factors of WC-base hard- metals (cemented carbides) such as the amount of Co metal binder phase, the carbide grain size, the microstructural defects acting as a fracture source, the solid solubility of tungsten in the binder phase affected by the carbon content, the precipitation of $Co_3W$, the domain size of binder phase, the formation of ${\beta}-free$ layer or Co-rich layer and CVD or PVD coated layer, and the effects of these factors on the flexural strength of the hardmetals are reviewed.

  • PDF