• Title/Summary/Keyword: Binary forecast

Search Result 20, Processing Time 0.02 seconds

Multi-Messenger Astronomy with GECKO, Gravitational-wave EM Counterpart Korean Observatory - Past, Present, and Future

  • Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.35.3-35.3
    • /
    • 2019
  • The new era of multi-messenger astronomy (MMA) has arrived in 2017 with the detection of the binary neutron star merger in both gravitational wave (GW) and electromagnetic radiation (EM). Now, the new run of GW detectors are providing numerous GW events and the number GW events are expected to increase dramatically in future as the GW sensitivities improve. When the GW studies are combined with EM counterpart observations, a great synergy is expected in many areas of study such as the physical process following the compact object merger, the environment of such events (and galaxy evolution), and cosmology, Therefore, it has now become crucial to identify and characterize these GW events in optical/IR EM. In the past, we have been performing optical/NIR observation of GW events using a worldwide network of more than 10 telescopes, and are getting more actively involved in MMA of GW sources. In this talk, we will present our network of telescopes, the EM follow-up observation results of GW events including GW170817 and the O3 events in 2019, and the current issues in MMA. We will also give the future prospects of MMA, showing the forecast for the GW events and the outlook of EM MMA observations.

  • PDF

FORECAST OF DAILY MAJOR FLARE PROBABILITY USING RELATIONSHIPS BETWEEN VECTOR MAGNETIC PROPERTIES AND FLARING RATES

  • Lim, Daye;Moon, Yong-Jae;Park, Jongyeob;Park, Eunsu;Lee, Kangjin;Lee, Jin-Yi;Jang, Soojeong
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.133-144
    • /
    • 2019
  • We develop forecast models of daily probabilities of major flares (M- and X-class) based on empirical relationships between photospheric magnetic parameters and daily flaring rates from May 2010 to April 2018. In this study, we consider ten magnetic parameters characterizing size, distribution, and non-potentiality of vector magnetic fields from Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Geostationary Operational Environmental Satellites (GOES) X-ray flare data. The magnetic parameters are classified into three types: the total unsigned parameters, the total signed parameters, and the mean parameters. We divide the data into two sets chronologically: 70% for training and 30% for testing. The empirical relationships between the parameters and flaring rates are used to predict flare occurrence probabilities for a given magnetic parameter value. Major results of this study are as follows. First, major flare occurrence rates are well correlated with ten parameters having correlation coefficients above 0.85. Second, logarithmic values of flaring rates are well approximated by linear equations. Third, using total unsigned and signed parameters achieved better performance for predicting flares than the mean parameters in terms of verification measures of probabilistic and converted binary forecasts. We conclude that the total quantity of non-potentiality of magnetic fields is crucial for flare forecasting among the magnetic parameters considered in this study. When this model is applied for operational use, it can be used using the data of 21:00 TAI with a slight underestimation of 2-6.3%.

Effect of Solvent Mixture on the Properties of LTCC Slurry and Green Sheets (LTCC 슬러리 및 그린시트의 물성 변화에 미치는 혼합용매 조성의 영향)

  • Cho, Beom-Joon;Park, Eun-Tae
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.533-537
    • /
    • 2006
  • The effects of binary solvent mixtures with various ratios of toluene and ethanol on the properties of slurries and green sheets were investigated. Viscosity of slurry was changed by varying the ratio of solvent mixture which affected the solubility of binder. The relative solvency behavior of a solvent mixture could be predicted with the Hildebrand solubility parameter(${\delta}$) and hydrogen bonding index( ${\gamma}$). The minimum viscosity, the best dispersion of binder, was reached at the composition of toluene:ethanol=4:6, which corresponded to our forecast. The mechanical properties of green sheets related to evaporation of solvents were influenced by the composition of the solvent mixture. At the azeotrope the skin was formed on a drying cast during the drying process because of fast evaporation. At a range of concentrations over 50wt% toluene, green sheets could not be fully dried at low temperature due to excessive toluene. The mechanical properties of green sheets were excellent at the azeotrope-like composition of toluene:ethanol=4:6 which has a little excess of toluene over the azeotrope.

Analysis of Land Use Change Using RCP-Based Dyna-CLUE Model in the Hwangguji River Watershed (RCP 시나리오 기반 Dyna-CLUE 모형을 이용한 황구지천 유역의 토지이용변화 분석)

  • Kim, Jihye;Park, Jihoon;Song, Inhong;Song, Jung-Hun;Jun, Sang Min;Kang, Moon Seong
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.2
    • /
    • pp.33-49
    • /
    • 2015
  • The objective of this study was to predict land use change based on the land use change scenarios for the Hwangguji river watershed, South Korea. The land use change scenario was derived from the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. The CLUE (conversion of land use and its effects) model was used to simulate the land use change. The CLUE is the modeling framework to simulate land use change considering empirically quantified relations between land use types and socioeconomic and biophysical driving factors through dynamical modeling. The Hwangguji river watershed, South Korea was selected as study area. Future land use changes in 2040, 2070, and 2100 were analyzed relative to baseline (2010) under the RCP4.5 and 8.5 scenarios. Binary logistic regressions were carried out to identify the relation between land uses and its driving factors. CN (Curve number) and impervious area based on the RCP4.5 and 8.5 scenarios were calculated and analyzed using the results of future land use changes. The land use change simulation of the RCP4.5 scenario resulted that the area of urban was forecast to increase by 12% and the area of forest was estimated to decrease by 16% between 2010 and 2100. The land use change simulation of the RCP8.5 scenario resulted that the area of urban was forecast to increase by 16% and the area of forest was estimated to decrease by 18% between 2010 and 2100. The values of Kappa and multiple resolution procedure were calculated as 0.61 and 74.03%. CN (III) and impervious area were increased by 0-1 and 0-8% from 2010 to 2100, respectively. The study findings may provide a useful tool for estimating the future land use change, which is an important factor for the future extreme flood.

An Analysis on the Preference and Use-Demand Forecasting of Bus Information (버스정보의 선호도 및 이용수요 예측에 관한 연구)

  • Lee, Won Gyu;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.791-799
    • /
    • 2008
  • To build the system which has high utilization and usefulness for users, it is necessary to know the information type and use-demand that the use want. The purpose of this study is to forecast the preference and demand of utilization for bus information when bus information is offered through cellular phon. The accomplishments of this research are as follow : Firstly, importance on the level of individual factor and the value of change's figure can be evaluated, using preference analysis on bus information by conjoint analysis. Secondly, by establishing the use-demand model bus information using binary logit model, influence factor on whether or not the use of the user. Finally, ordered probit model was built by use behavior model in payment per call or per month of potential user of bus information. Through call times and sensitive analysis by payment methods, elasticity point, optimal payment fee, and use probability was analyzed. This study make application as basic to efficient bus information policy and to improve use rate of bus information in future because this study make it possible to get preference analysis, use-demand analysis and estimation of optimal payment fee which is reflecting various requirement in use of bus information user.

Demand Analysis of Electric Vehicle by Household Type (전기자동차의 가구유형별 수요에 대한 고찰)

  • Kim, Won Suk;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.933-940
    • /
    • 2018
  • The conversion of the internal combustion engine vehicle to the electric vehicle is suggested as a solution to the problem of global climate change and environmental pollution. Accordingly, this study was started to promote the use of electric vehicles. The purpose of this study is to identify the basic background knowledge and current status of electric vehicles in Korea and abroad, and expand from previous understanding on which factors affect ones choice on electric vehicles by considering individual characteristics and context in detail. In the analysis, a set of demand forecasting models were constructed by grouping the respondents based on the household characteristics as well as the vehicle ownership. At the time in need for better understanding of the feasibility of electric vehicles, it is expected that the research can assist the promotion of electric vehicles. In the follow-up study, I would like to continue the research on the activation of electric vehicles.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM (다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형)

  • Park, Ji-Young;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis (키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향)

  • Kho, Jaechang;Cho, Kuentae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.101-123
    • /
    • 2013
  • Recently due to the advancements of science and information technology, the socio-economic business areas are changing from the industrial economy to a knowledge economy. Furthermore, companies need to do creation of new value through continuous innovation, development of core competencies and technologies, and technological convergence. Therefore, the identification of major trends in technology research and the interdisciplinary knowledge-based prediction of integrated technologies and promising techniques are required for firms to gain and sustain competitive advantage and future growth engines. The aim of this paper is to understand the recent research trend in management of technology (MOT) and to foresee promising technologies with deep knowledge for both technology and business. Furthermore, this study intends to give a clear way to find new technical value for constant innovation and to capture core technology and technology convergence. Bibliometrics is a metrical analysis to understand literature's characteristics. Traditional bibliometrics has its limitation not to understand relationship between trend in technology management and technology itself, since it focuses on quantitative indices such as quotation frequency. To overcome this issue, the network focused bibliometrics has been used instead of traditional one. The network focused bibliometrics mainly uses "Co-citation" and "Co-word" analysis. In this study, a keywords network analysis, one of social network analysis, is performed to analyze recent research trend in MOT. For the analysis, we collected keywords from research papers published in international journals related MOT between 2002 and 2011, constructed a keyword network, and then conducted the keywords network analysis. Over the past 40 years, the studies in social network have attempted to understand the social interactions through the network structure represented by connection patterns. In other words, social network analysis has been used to explain the structures and behaviors of various social formations such as teams, organizations, and industries. In general, the social network analysis uses data as a form of matrix. In our context, the matrix depicts the relations between rows as papers and columns as keywords, where the relations are represented as binary. Even though there are no direct relations between papers who have been published, the relations between papers can be derived artificially as in the paper-keyword matrix, in which each cell has 1 for including or 0 for not including. For example, a keywords network can be configured in a way to connect the papers which have included one or more same keywords. After constructing a keywords network, we analyzed frequency of keywords, structural characteristics of keywords network, preferential attachment and growth of new keywords, component, and centrality. The results of this study are as follows. First, a paper has 4.574 keywords on the average. 90% of keywords were used three or less times for past 10 years and about 75% of keywords appeared only one time. Second, the keyword network in MOT is a small world network and a scale free network in which a small number of keywords have a tendency to become a monopoly. Third, the gap between the rich (with more edges) and the poor (with fewer edges) in the network is getting bigger as time goes on. Fourth, most of newly entering keywords become poor nodes within about 2~3 years. Finally, keywords with high degree centrality, betweenness centrality, and closeness centrality are "Innovation," "R&D," "Patent," "Forecast," "Technology transfer," "Technology," and "SME". The results of analysis will help researchers identify major trends in MOT research and then seek a new research topic. We hope that the result of the analysis will help researchers of MOT identify major trends in technology research, and utilize as useful reference information when they seek consilience with other fields of study and select a new research topic.

The Prediction of Purchase Amount of Customers Using Support Vector Regression with Separated Learning Method (Support Vector Regression에서 분리학습을 이용한 고객의 구매액 예측모형)

  • Hong, Tae-Ho;Kim, Eun-Mi
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.213-225
    • /
    • 2010
  • Data mining has empowered the managers who are charge of the tasks in their company to present personalized and differentiated marketing programs to their customers with the rapid growth of information technology. Most studies on customer' response have focused on predicting whether they would respond or not for their marketing promotion as marketing managers have been eager to identify who would respond to their marketing promotion. So many studies utilizing data mining have tried to resolve the binary decision problems such as bankruptcy prediction, network intrusion detection, and fraud detection in credit card usages. The prediction of customer's response has been studied with similar methods mentioned above because the prediction of customer's response is a kind of dichotomous decision problem. In addition, a number of competitive data mining techniques such as neural networks, SVM(support vector machine), decision trees, logit, and genetic algorithms have been applied to the prediction of customer's response for marketing promotion. The marketing managers also have tried to classify their customers with quantitative measures such as recency, frequency, and monetary acquired from their transaction database. The measures mean that their customers came to purchase in recent or old days, how frequent in a period, and how much they spent once. Using segmented customers we proposed an approach that could enable to differentiate customers in the same rating among the segmented customers. Our approach employed support vector regression to forecast the purchase amount of customers for each customer rating. Our study used the sample that included 41,924 customers extracted from DMEF04 Data Set, who purchased at least once in the last two years. We classified customers from first rating to fifth rating based on the purchase amount after giving a marketing promotion. Here, we divided customers into first rating who has a large amount of purchase and fifth rating who are non-respondents for the promotion. Our proposed model forecasted the purchase amount of the customers in the same rating and the marketing managers could make a differentiated and personalized marketing program for each customer even though they were belong to the same rating. In addition, we proposed more efficient learning method by separating the learning samples. We employed two learning methods to compare the performance of proposed learning method with general learning method for SVRs. LMW (Learning Method using Whole data for purchasing customers) is a general learning method for forecasting the purchase amount of customers. And we proposed a method, LMS (Learning Method using Separated data for classification purchasing customers), that makes four different SVR models for each class of customers. To evaluate the performance of models, we calculated MAE (Mean Absolute Error) and MAPE (Mean Absolute Percent Error) for each model to predict the purchase amount of customers. In LMW, the overall performance was 0.670 MAPE and the best performance showed 0.327 MAPE. Generally, the performances of the proposed LMS model were analyzed as more superior compared to the performance of the LMW model. In LMS, we found that the best performance was 0.275 MAPE. The performance of LMS was higher than LMW in each class of customers. After comparing the performance of our proposed method LMS to LMW, our proposed model had more significant performance for forecasting the purchase amount of customers in each class. In addition, our approach will be useful for marketing managers when they need to customers for their promotion. Even if customers were belonging to same class, marketing managers could offer customers a differentiated and personalized marketing promotion.