• Title/Summary/Keyword: Binary forecast

Search Result 20, Processing Time 0.02 seconds

Binary Forecast of Heavy Snow Using Statistical Models

  • Sohn, Keon-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.369-378
    • /
    • 2006
  • This Study focuses on the binary forecast of occurrence of heavy snow in Honam area based on the MOS(model output statistic) method. For our study daily amount of snow cover at 17 stations during the cold season (November to March) in 2001 to 2005 and Corresponding 45 RDAPS outputs are used. Logistic regression model and neural networks are applied to predict the probability of occurrence of Heavy snow. Based on the distribution of estimated probabilities, optimal thresholds are determined via true shill score. According to the results of comparison the logistic regression model is recommended.

Forecasting the Demand for the Substitution of Next Generations of Digital TV Using Choice-Based Diffusion Models (선택기반확산모형을 이용한 디지털 TV 수요예측)

  • Jeong U-Su;Nam Seung-Yong;Kim Hyeong-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1116-1123
    • /
    • 2006
  • The methodological framework proposed in this paper addresses the strength of the applied Bass model by Mahajan and Muller(1996) that it reflects the substitution of next generations among products. Also this paper is to estimate and analyze the forecast of demand for products that do not exist in the marketplace. We forecast the sales of digital TV using estimated market share and data obtained by the face to face Interview. In this research, we use two methods to analyze the demand for Digital TV that are the forecasting the Demand for the Substitution and binary logit analysis. The logit analysis is to estimate the decisive factor of purchasing digital TV. The decisive factors are composed of purchasing plan, region, gender, TV price, contents, coverage, income, age, and TV program. We apply the model to South Korea's market for digital TV. The results show that (1) Income, region and TV price play a prominent part which is the decisive factor of purchasing digital TV. (2) We forecaste the demand of digital TV that will be demanded about 18 millions TVs in 2015

  • PDF

Binary Forecast of Asian Dust Days over South Korea in the Winter Season (남한지역 겨울철 황사출현일수에 대한 범주 예측모형 개발)

  • Sohn, Keon-Tae;Lee, Hyo-Jin;Kim, Seung-Bum
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.535-546
    • /
    • 2011
  • This study develops statistical models for the binary forecast of Asian dust days over South Korea in the winter season. For this study, we used three kinds of data; the rst one is the observed Asian dust days for a period of 31 years (1980 to 2010) as target values, the second one is four meteorological factors(near surface temperature, precipitation, snowfall, ground wind speed) in the source regions of Asian dust based on the NCEP reanalysis data and the third one is the large-scale climate indices. Four kinds of statistical models(multiple regression models, logistic regression models, decision trees, and support vector machines) are applied and compared based on skill scores(hit rate, probability of detection and false alarm rate).

Prediction of extreme PM2.5 concentrations via extreme quantile regression

  • Lee, SangHyuk;Park, Seoncheol;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.319-331
    • /
    • 2022
  • In this paper, we develop a new statistical model to forecast the PM2.5 level in Seoul, South Korea. The proposed model is based on the extreme quantile regression model with lasso penalty. Various meteorological variables and air pollution variables are considered as predictors in the regression model, and the lasso quantile regression performs variable selection and solves the multicollinearity problem. The final prediction model is obtained by combining various extreme lasso quantile regression estimators and we construct a binary classifier based on the model. Prediction performance is evaluated through the statistical measures of the performance of a binary classification test. We observe that the proposed method works better compared to the other classification methods, and predicts 'very bad' cases of the PM2.5 level well.

Forecasting Probability of Precipitation Using Morkov Logistic Regression Model

  • Park, Jeong-Soo;Kim, Yun-Seon
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • A three-state Markov logistic regression model is suggested to forecast the probability of tomorrow's precipitation based on the current meteorological situation. The suggested model turns out to be better than Markov regression model in the sense of the mean squared error of forecasting for the rainfall data of Seoul area.

A Study on an ETCS Demand Forecasting Model of Toll Roads in Changwon City (유료도로 ETCS 이용수요 예측모형에 관한 연구 (창원시를 중심으로))

  • Kim, Kyung-Whan;Ha, Man-Bok;Jeon, Yeon-Hoo;Lee, Ik-Su
    • International Journal of Highway Engineering
    • /
    • v.9 no.1 s.31
    • /
    • pp.17-27
    • /
    • 2007
  • Since early 1990s, several developed countries have applied the Electronic Toll Collection System (ETCS) to toll roads in order to solve traffic congestion and delay problems at toll plazas. For the successful operation of the ETCS, it is important to correctly forecast the ETCS using rate. In this study, it was conceived to develop a sophisticated demand forecasting model of the ETCS for toll roads in Changwon City The Binary Logit and neural network models were tested for the model considering 11 explaining variables. The best results in prediction accuracy and goodness-of-fit were obtained on the neural network model. However, because of the difficulty in predicting the 11 variables and its fitness in wide range, the Binary Logit model which considers three policy variables only is recommended as the model to forecast the ETCS using rate.

  • PDF

Disaggregate Demand Forecasting and Estimation of the Optimal Price for UTIS Service (무선교통정보수집제공시스템(UTIS) 서비스의 이용 수요 예측 및 이용료 적정 수준 산정에 관한 연구)

  • Jang, Seok-Yong;Jung, Hun-Young;Ko, Sang-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.101-115
    • /
    • 2008
  • This study reports UTIS(Urban Traffic Information System), which has been generalized in developed countries through brisk research and development and is being promoted for introduction by National Police Agency and Road Traffic Authority to reduce the astronomical amount of social expenses including traffic congestion expenses. Also this study investigates the proper charges for using by the preestimate of demand and contentment according to methods of payment after the service is introduced. The results of this study are as follows. First, demand forecast model is constructed by Binary Logit Model. Second, forecast models of using aspects of UTIS service according to methods of payment are established by Ordered Probit Model. Third, the proper charges for using of UTIS service according to methods of payment are presented to the supplier in the aspects of users. For this, preferences by using aspects and methods of payment are captured. And unit elasticity of coefficient of utilization is understood through responsiveness analysis according to methods of payment.

Comparative Analysis of the Binary Classification Model for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 이진 분류 모델 비교 분석)

  • Jung, Yong-Jin;Lee, Jong-Sung;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • High forecast accuracy is required as social issues on particulate matter increase. Therefore, many attempts are being made using machine learning to increase the accuracy of particulate matter prediction. However, due to problems with the distribution of imbalance in the concentration and various characteristics of particulate matter, the learning of prediction models is not well done. In this paper, to solve these problems, a binary classification model was proposed to predict the concentration of particulate matter needed for prediction by dividing it into two classes based on the value of 80㎍/㎥. Four classification algorithms were utilized for the binary classification of PM10. Classification algorithms used logistic regression, decision tree, SVM, and MLP. As a result of performance evaluation through confusion matrix, the MLP model showed the highest binary classification performance with 89.98% accuracy among the four models.

Estimating Container Traffic of New Incheon Outer-South Port Using Stated Preference Methodology (명시선호(Stated Preference) 방법에 의한 인천남외항 컨테이너 물동량 추정)

  • Jeon, Il-Su;Kim, Hye-Jin;Kim, Jin-Won
    • Journal of Korea Port Economic Association
    • /
    • v.20 no.2
    • /
    • pp.151-167
    • /
    • 2004
  • Traditional traffic forecast has employed regression analysis or time-series analysis based on past trends of explanatory variables. However, not existing but planned port facilities do not have historical data for traffic estimation. Consequently, arbitrary traffic allocation has been subject to researcher's intuition. In this paper, container throughput at New Incheon Outer-South Port will be estimated using stated preference(SP) and sample enumeration methodology on the basis of survey data about the choice behaviors of port users in a theoretical situation. In the SP survey, shippers, freight forwarders and carriers were required to answer a choice between two alternative ports: Busan and Incheon. Although total 27 scenarios of questionnaires were constructed with 3 levels of 3 explanatory variables, each interviewee was asked to answer for just 9 scenarios chosen at random. A binary choice logit model was applied to the survey data. The elasticity of travel time is estimated to be very high, implying that building New Incheon Outer-South Port could be effective in relieving the congestion of the Kyungin corridor. The analysis result shows that increasing service level at Incheon Port would bring in the substantial diversion of container cargo in the Capital region to Incheon Port from Busan Port.

  • PDF

A Study on the Forecast of Industrial Land Demand and the Location Decision of Industrial Complexes - In Case of Anseong City (산업용지 수요예측 및 산업단지 입지선정에 관한 연구 - 안성시를 사례로 -)

  • Cho, Kyu-Young;Park, Heon-Soo;Chung, Il-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.3
    • /
    • pp.37-51
    • /
    • 2008
  • This study aims to build a model dealing with the location decision of new manufacturing firms and their land demand. The model is composed with 1) the binary logit model structure identifying a future probability of manufacturing firms to locate in a city and their land demand; and 2) the land use suitability of the land demand. The model was empirically tested in the case of Anseong City. We used establishment-level data for the manufacturing industry from the Report on Mining and Manufacturing Survey. 48 industry groups were scrutinized to find the location probability in the city and their land demand via logit model with the dependent variables: number of employment, land capital, building capital, total products, and value-added for a new industry since 2001. It is forecasted that the future land areas (to 2025) for the manufacturing industries in the city are $5.94km^2$ and additional land demand for clustering the existing industries scattered over the city is $2.lkm^2$. Five industrial complex locations were identified through the land use suitability analysis.