• 제목/요약/키워드: Binary Refrigerant Mixture

검색결과 19건 처리시간 0.022초

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

혼합냉매의 누출과정에 관한 시뮬레이션 (Simulation of a Leakage Process of Refrigerant Mixtures)

  • 김민수
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.217-225
    • /
    • 1993
  • Nonflammable mixtures of flammable and nonflammable refrigerants are possible as substitute refrigerants for use in domestic heat pumps and refrigerators. Refrigerant leakage from such a system is of paramount concern since it is possible that the resulting mixture composition remaining in system will reside in the flammable range. This paper presents a simulation of a leakage process of refrigerant mixtures. Idealized cases of isothermal leakage process are considered in this study representing a slow leak. Simulation is performed for selected composition of binary and ternary refrigerant mixture; R-32/134a and R-32/125/134a. Mixture compositions with respect to percentage leak of original charge are presented. In isothermal leakage process, both vapor and liquid compositions of more volatile refrigerant decrease during vapor and liquid leak, but the total composition of this component decreases during vapor leak and increases during liquid leak. Vapor and liquid compositions are determined depending on the vapor-liquid equilibrium relation of the refrigerant mixture. The refrigerant mixture left in the system can go to a nonflammable direction relying on which component in the mixture is flammable.

  • PDF

수평관에서 이원 혼합냉매의 응축 열전달계수 (Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on a Horizontal Smooth Tube)

  • 김경기;서강태;정동수
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1049-1056
    • /
    • 2000
  • In this study, condensation heat transfer coefficients(HTCs) of 2 nonazeotropic refrigerant mixtures of HFC32/HFC134a and HFC134a/HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lower than the ideal values calculated by the mass fraction weighting of the pure components HTCs. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against the predicted ones by Colburn and Drew\`s film model and a good agreement was observed.

  • PDF

혼합냉매의 열역학적 물성치 추산에 관한 연구 (Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1337-1348
    • /
    • 1990
  • 본 연구에서는 Peng-Robinson 상태 방정식을 기본으로 하여 먼저 단일 성분의 냉매에 대한 열역학적 물성치를 구한 뒤 그 정확도를 검증하고, 동일한 형태의 상태식 과 적절한 혼합 법칙을 통해 혼합냉매의 기액 평형 상태와 냉동 및 열펌프 사이클 해 석에 필요한 엔탈피와 엔트로피 등의 열역학적 물성치를 추산하고자 한다.단일 성 분의 냉매로서는 R13B1, R22, R12, R152a, R114를 택하였고, 혼합냉매로서는 앞의 단 일성분 냉매를 혼합한 것 중에서 그 기초적인 실험 자료가 아미 알려진 R13B1/R114, R22/R114, R12/R114 R152a/R114, R13B1/R152a 및 R13B1/R12를 택하였다. 이는 추후 상이한 냉매를 단일식으로 나타낼 수 있는 대응상태의 원리를 사용한 열물성 계산의 기반이 될 수 있을 것이다.

열전달 촉진관에서 2원 혼합냉매의 외부 응축열전달계수 (Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on Enhanced Tubes)

  • 김경기;서강태;채순남;정동수
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.161-167
    • /
    • 2002
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC134a and HF0134a/HCF0123 at various compositions were measured on both low fin and Turbo-C enhanced tubes of 19.0 mm outside diameter All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3- 8 K. Test results showed that HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by the mass fraction weighting of the pure compo- nents'HTCs. Also the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased as the wall subcooling increased, which was due to the sudden break up of the vapor diffusion film with an increase in wall subcooling. Finally, heat transfer enhancement ratios for mixtures were found to be much lower than those of pure fluids.

External Condensation Heat Transfer Coefficients of Refrigerant Mixtures on a Smooth Tube

  • An, Kwang-Yong;Cho, Young-Mok;Seo, Kang-Tae;Jung, Dong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권3호
    • /
    • pp.1-9
    • /
    • 2001
  • In this study, condensation heat transfer coefficients (HTCs) of nonazeotropic refrigerant mixtures of HFC32/HFC 134a and HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lowed than the ideal values calculated by the mass fraction weighting of the HTCs of the pure components. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against thc predicted ones by Colburn and Drew's film model and a good agreement was observed within a deviation of 15%.

  • PDF

세관내 R-22 대체냉매의 응축압력강항에 관한 연구 (The Condensation Pressure Drop of Alternative Refrigerants for R-22 in Small Diameter Tubes)

  • 오후규;손창효;최영석;김기수
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1245-1252
    • /
    • 2001
  • The condensation pressure drop for pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube was investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and coolant flowing in the annulus. The test section consists of 1220 [mm] length with horizontal copper tube of 3.38 [mm] outer diameter and 1.77 [mm] inner diameter. The refrigerant mass fluxes ranged from 450 to 1050 [kg/(㎡$.$s)] and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main experimental results were summarized as follows : In the case of single-phase flow, the pressure drop of R-134a is much higher than that of R-22 and R-410A for the same Reynolds number. The friction factors for small diameter tubes are higher than those predicted by Blasius equation. In the case of two-phase flow, the pressure drop increases with increasing mass flux and decreasing quality. The pressure drop of R-134a is much higher than that of R-22 and R-410A for the same mass flux. Most of correlations proposed in the large diameter tube showed enormous deviations with experimental data. However, the correlation predicted by Honda et al showed relatively good agreement with experimental data for R-134.

HFC 순수냉매 및 혼합냉매의 모세관내에서 마찰에 의한 압력강하 (Frictional Pressure Drop of a Capillary Tube Flow of Pure HFC Refrigerants and Their Mixtures)

  • 장세동;노승탁
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.589-599
    • /
    • 1995
  • The frictional pressure drop of a capillary tube flow is experimentally investigated for pure refrigerants such as R32, R125, and R134a and refrigerant mixtures such as R32/R134a(30/70 by mass percent), R32/R125(60/40), R125/R134a(30/70), and R32/R125/R134a(23/25/52). The binary interaction parameters for the calculation of viscosities of refrigerant mixtures are found based upon the data in the open literature. Several homogeneous flow models predicting the viscosity of two-phase region are compared to select the best model. Cicchitti's equation is known to be the most adequate for the prediction of the viscosity for refrigerant mixtures, which is used in the analysis of adiabatic capillary flows. A model for the prediction of the frictional pressure drop of single and two-phase flow is developed for refrigerant mixtures in this study. This model may be used to design and analyze the performance of a capillary tube in the refrigerating system.

  • PDF

수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산 (Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State)

  • 김민수;김동섭;노승탁
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2189-2205
    • /
    • 1991
  • 본 연구에서는 혼합냉매의 열역학적 물성치를 정확하게 예측하기 위하여 척력 과 인력항으로 된 간단한 형태의 상태방정식을 택하고 이를 이용하여 순수성분에 대한 열역학적 물성치 자료와 혼합냉매에 대한 기액평형상태 자료를 이용하여 혼합물에 대 한 열역학적 물성치를 보다 더욱 정확하게 예측 할 수 있는 방법에 관해 연구하고자 한다.혼합냉매에 대한 상태방정식과 이상기체 상태의 비열자료를 기초로 열역학적 관계식을 이용하여, 압력-엔탈피, 온도-엔트로피 관계를 공식화하며, 혼합냉매에 대한 열펌프 및 냉동사이클 해석에 필요한 자료를 제시한다.

평판 표면에서 HFC32/HFC152a 혼합냉매의 풀 비등 열전달계수 (Pool Boiling Heat Transfer Coefficient of HFC32/HFC152a on a Plain Surface)

  • 강동규;이요한;정동수
    • 설비공학논문집
    • /
    • 제25권9호
    • /
    • pp.484-492
    • /
    • 2013
  • Nucleate pool boiling heat transfer coefficients (HTCs) are measured with HFC32/HFC152a mixture at several compositions. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a horizontal plain square surface of $9.53{\times}9.53$ mm, with heat fluxes of 10 $kW/m^2$ to 100 $kW/m^2$ with an interval of 10 $kW/m^2$, in the increasing order of heat flux. Test results show that the HTCs of these mixtures are up to 45% lower than those of the ideal HTCs calculated by a linear mixing rule with pure fluids' HTCs, due to the mass transfer resistance associated with non-azeotropic refrigerant mixtures. Pool boiling data show the deduction in HTCs with an increase in GTD of the mixture. The present mixture data agree well with five well known correlations, within 20% deviation.