• Title/Summary/Keyword: Binary Patterns

Search Result 262, Processing Time 0.034 seconds

Acceleration the Convergence and Improving the Learning Accuracy of the Back-Propagation Method (Back-Propagation방법의 수렴속도 및 학습정확도의 개선)

  • 이윤섭;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.856-867
    • /
    • 1990
  • In this paper, the convergence and the learning accuracy of the back-propagation (BP) method in neural network are investigated by 1) analyzing the reason for decelerating the convergence of BP method and examining the rapid deceleration of the convergence when the learning is executed on the part of sigmoid activation function with the very small first derivative and 2) proposing the modified logistic activation function by defining, the convergence factor based on the analysis. Learning on the output patterns of binary as well as analog forms are tested by the proposed method. In binary output patter, the test results show that the convergence is accelerated and the learning accuracy is improved, and the weights and thresholds are converged so that the stability of neural network can be enhanced. In analog output patter, the results show that with extensive initial transient phenomena the learning error is decreased according to the convergence factor, subsequently the learning accuracy is enhanced.

  • PDF

STRUCTURES OF IDEMPOTENT MATRICES OVER CHAIN SEMIRINGS

  • Kang, Kyung-Tae;Song, Seok-Zun;Yang, Young-Oh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.721-729
    • /
    • 2007
  • In this paper, we have characterizations of idempotent matrices over general Boolean algebras and chain semirings. As a consequence, we obtain that a fuzzy matrix $A=[a_{i,j}]$ is idempotent if and only if all $a_{i,j}$-patterns of A are idempotent matrices over the binary Boolean algebra $\mathbb{B}_1={0,1}$. Furthermore, it turns out that a binary Boolean matrix is idempotent if and only if it can be represented as a sum of line parts and rectangle parts of the matrix.

Poling Quality Evaluation of Periodically Poled Lithium Niobate Using Diffraction Method

  • Pandiyan, Krishnamoorthy;Kang, Yeon-Suk;Lim, Hwan-Hong;Kim, Byeong-Joo;Prakash, Om;Cha, Myoung-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.205-209
    • /
    • 2008
  • We demonstrated a simple way of evaluating the duty cycle error in periodically polled lithium niobate(PPLN) based on the method of binary phase diffraction grating. To demonstrate this method, -Z face etched PPLN of desired periods were fabricated by the standard electric field poling technique. The etched PPLN was considered as a surface-relief binary phase grating. The diffraction patterns were recorded for different spatial locations along the length of the sample. The experimentally observed efficiencies of the diffracted orders were compared with the theoretically calculated values to estimate the duty cycle error.

Performance Comparison on Pattern Recognition Between DNA Coding Method and GA Coding Method (DNA 코딩방법과 GA 코딩방법의 패턴인식 성능 비교에 관한 연구)

  • 백동화;한승수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.383-386
    • /
    • 2002
  • In this paper, we investigated the pattern recognition performance of the numeric patterns (from 0 to 9) using DNA coding method. The pattern recognition performance of the DNA coding method is compared to the that of the GA(Genetic Algorithm). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string using binary coding, while DNA coding method uses four-type bases denoted by A(Adenine), C(Cytosine), G(Guanine) and T(Thymine), The pattern recognition performance of GA and DNA coding method is evaluated by using the same genetic operators(crossover and mutation) and the crossover probability and mutation probability are set the same value to the both methods. The DNA coding method has better characteristics over genetic algorithms (GA). The reasons for this outstanding performance is multiple possible solution presentation in one string and variable solution string length.

Modified Illumination by Binary Phase Diffractive Patterns on the Backside of a Photomask (마스크 뒷면에 2 위상 회절 격자를 구현한 변형 조명 방법)

  • 이재철;오용호;고춘수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.697-700
    • /
    • 2004
  • We propose a method that realizes the modified illumination by implementing a binary phase grating at the backside of a photomask. By modeling the relationship between the shape of a grating on the photomask and the light intensity at the pupil plane, we developed a program named MIDAS that finds the optimum grating pattern with a stochastic approach. After applying the program to several examples, we found that the program finds the grating pattern for the modified illumination that we want. By applying the grating at the backside of a photomask, the light efficiency of modified illumination may be improved.

Texture Classification Using Local Neighbor Differences (지역 근처 차이를 이용한 텍스쳐 분류에 관한 연구)

  • Saipullah, Khairul Muzzammil;Peng, Shao-Hu;Park, Min-Wook;Kim, Deok-Hwan
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.377-380
    • /
    • 2010
  • This paper proposes texture descriptor for texture classification called Local Neighbor Differences (LND). LND is a high discriminating texture descriptor and also robust to illumination changes. The proposed descriptor utilizes the sign of differences between surrounding pixels in a local neighborhood. The differences of those pixels are thresholded to form an 8-bit binary codeword. The decimal values of these 8-bit code words are computed and they are called LND values. A histogram of the resulting LND values is created and used as feature to describe the texture information of an image. Experimental results, with respect to texture classification accuracies using OUTEX_TC_00001 test suite has been performed. The results show that LND outperforms LBP method, with average classification accuracies of 92.3% whereas that of local binary patterns (LBP) is 90.7%.

Loading pattern optimization using simulated annealing and binary machine learning pre-screening

  • Ga-Hee Sim;Moon-Ghu Park;Gyu-ri Bae;Jung-Uk Sohn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1672-1678
    • /
    • 2024
  • We introduce a creative approach combining machine learning with optimization techniques to enhance the optimization of the loading pattern (LP). Finding the optimal LP is a critical decision that impacts both the reload safety and the economic feasibility of the nuclear fuel cycle. While simulated annealing (SA) is a widely accepted technique to solve the LP optimization problem, it suffers from the drawback of high computational cost since LP optimization requires three-dimensional depletion calculations. In this note, we introduce a technique to tackle this issue by leveraging neural networks to filter out inappropriate patterns, thereby reducing the number of SA evaluations. We demonstrate the efficacy of our novel approach by constructing a machine learning-based optimization model for the LP data of the Korea Standard Nuclear Power Plant (OPR-1000).

A Vertex-Detecting of Hanguel Patterns Using Nested Contour Shape (중첩윤곽 형상에 의한 한글패턴의 정점검출)

  • Koh, Chan;Lee, Dai-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.2
    • /
    • pp.112-123
    • /
    • 1990
  • This paper presents a vertex-detecting of Hanguel patterns using nested contour shape. Inputed binary character patterns are transformed by distance transformation method and make a new file of transferred data by analysis of charactersitcs. A new vertex-detecting algorithm for recognizing Hanguel patterns using the two data files is proposed. This algorithm is able to reduce the projecting parts of Hanguel pattern, separate the connecting parts between different strokes, set the code number by transformed value of coorked features. It makes the output of results in order to apply the Hanguel recognition.

  • PDF

A Texture Classification Based on LBP by Using Intensity Differences between Pixels (화소간의 명암차를 이용한 LBP 기반 질감분류)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.483-488
    • /
    • 2015
  • This paper presents a local binary pattern(LBP) for effectively classifying textures, which is based on the multidimensional intensity difference between the adjacent pixels in the block image. The intensity difference by considering the a extent of 4 directional changes(verticality, horizontality, diagonality, inverse diagonality) in brightness between the adjacent pixels is applied to reduce the computation load as a results of decreasing the levels of histogram for classifying textures of image. And the binary patterns that is represented by the relevant intensities within a block image, is also used to effectively classify the textures by accurately reflecting the local attributes. The proposed method has been applied to classify 24 block images from USC Texture Mosaic #2 of 128*128 pixels gray image. The block images are different in size and texture. The experimental results show that the proposed method has a speedy classification and makes a free size block images classify possible. In particular, the proposed method gives better results than the conventional LBP by increasing the range of histogram level reduction as the block size becomes larger.

Texture Classification Algorithm for Patch-based Image Processing (패치 기반 영상처리를 위한 텍스쳐 분류 알고리즘)

  • Yu, Seung Wan;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.146-154
    • /
    • 2014
  • The local binary pattern (LBP) scheme that is one of the texture classification methods normally uses the distribution of flat, edge and corner patterns. However, it cannot examine the edge direction and the pixel difference because it is a sort of binary pattern caused by thresholding. Furthermore, since it cannot consider the pixel distribution, it shows lower performance as the image size becomes larger. In order to solve this problem, we propose a sub-classification method using the edge direction distribution and eigen-matrix. The proposed sub-classification is applied to the particular texture patches which cannot be classified by LBP. First, we quantize the edge direction and compute its distribution. Second, we calculate the distribution of the largest value among eigenvalues derived from structure matrix. Simulation results show that the proposed method provides a higher classification performance of about 8 % than the existing method.