• 제목/요약/키워드: Binary Patterns

Search Result 262, Processing Time 0.019 seconds

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF

A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis (키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향)

  • Kho, Jaechang;Cho, Kuentae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.101-123
    • /
    • 2013
  • Recently due to the advancements of science and information technology, the socio-economic business areas are changing from the industrial economy to a knowledge economy. Furthermore, companies need to do creation of new value through continuous innovation, development of core competencies and technologies, and technological convergence. Therefore, the identification of major trends in technology research and the interdisciplinary knowledge-based prediction of integrated technologies and promising techniques are required for firms to gain and sustain competitive advantage and future growth engines. The aim of this paper is to understand the recent research trend in management of technology (MOT) and to foresee promising technologies with deep knowledge for both technology and business. Furthermore, this study intends to give a clear way to find new technical value for constant innovation and to capture core technology and technology convergence. Bibliometrics is a metrical analysis to understand literature's characteristics. Traditional bibliometrics has its limitation not to understand relationship between trend in technology management and technology itself, since it focuses on quantitative indices such as quotation frequency. To overcome this issue, the network focused bibliometrics has been used instead of traditional one. The network focused bibliometrics mainly uses "Co-citation" and "Co-word" analysis. In this study, a keywords network analysis, one of social network analysis, is performed to analyze recent research trend in MOT. For the analysis, we collected keywords from research papers published in international journals related MOT between 2002 and 2011, constructed a keyword network, and then conducted the keywords network analysis. Over the past 40 years, the studies in social network have attempted to understand the social interactions through the network structure represented by connection patterns. In other words, social network analysis has been used to explain the structures and behaviors of various social formations such as teams, organizations, and industries. In general, the social network analysis uses data as a form of matrix. In our context, the matrix depicts the relations between rows as papers and columns as keywords, where the relations are represented as binary. Even though there are no direct relations between papers who have been published, the relations between papers can be derived artificially as in the paper-keyword matrix, in which each cell has 1 for including or 0 for not including. For example, a keywords network can be configured in a way to connect the papers which have included one or more same keywords. After constructing a keywords network, we analyzed frequency of keywords, structural characteristics of keywords network, preferential attachment and growth of new keywords, component, and centrality. The results of this study are as follows. First, a paper has 4.574 keywords on the average. 90% of keywords were used three or less times for past 10 years and about 75% of keywords appeared only one time. Second, the keyword network in MOT is a small world network and a scale free network in which a small number of keywords have a tendency to become a monopoly. Third, the gap between the rich (with more edges) and the poor (with fewer edges) in the network is getting bigger as time goes on. Fourth, most of newly entering keywords become poor nodes within about 2~3 years. Finally, keywords with high degree centrality, betweenness centrality, and closeness centrality are "Innovation," "R&D," "Patent," "Forecast," "Technology transfer," "Technology," and "SME". The results of analysis will help researchers identify major trends in MOT research and then seek a new research topic. We hope that the result of the analysis will help researchers of MOT identify major trends in technology research, and utilize as useful reference information when they seek consilience with other fields of study and select a new research topic.