• Title/Summary/Keyword: Binary Patterns

Search Result 262, Processing Time 0.033 seconds

A Multi-layer Bidirectional Associative Neural Network with Improved Robust Capability for Hardware Implementation (성능개선과 하드웨어구현을 위한 다층구조 양방향연상기억 신경회로망 모델)

  • 정동규;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.159-165
    • /
    • 1994
  • In this paper, we propose a multi-layer associative neural network structure suitable for hardware implementaion with the function of performance refinement and improved robutst capability. Unlike other methods which reduce network complexity by putting restrictions on synaptic weithts, we are imposing a requirement of hidden layer neurons for the function. The proposed network has synaptic weights obtainted by Hebbian rule between adjacent layer's memory patterns such as Kosko's BAM. This network can be extended to arbitary multi-layer network trainable with Genetic algorithm for getting hidden layer memory patterns starting with initial random binary patterns. Learning is done to minimize newly defined network error. The newly defined error is composed of the errors at input, hidden, and output layers. After learning, we have bidirectional recall process for performance improvement of the network with one-shot recall. Experimental results carried out on pattern recognition problems demonstrate its performace according to the parameter which represets relative significance of the hidden layer error over the sum of input and output layer errors, show that the proposed model has much better performance than that of Kosko's bidirectional associative memory (BAM), and show the performance increment due to the bidirectionality in recall process.

  • PDF

Design of phase-only diffractive pattern elements using a two-stage iterative Fourier transform algorithm (2단계 iterative Fourier transform 알고리즘을 이용한 위상형 회절무늬소자 설계)

  • 정필호;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • A two-stage iterative Fourier transform algorithm, based on hybrid input-output algorithm and new Pnoise algorithm, is used to design continuous and quantized phase-only diffractive pattern elements which produce arbitrary given intensity patterns via Fraunhofer diffraction. Numerical results for two $128\times128$ binary patterns and two grayscale patterns are compared with those of other algorithms. It is found that the algorithm yields better signal-to-noise ratio and even better uniformity with slightly lower diffraction efficiency than other algorithms. We investigated the dependence of performance on parameters used in the algorithm, size of noise region, and the number of phase levels for quantized elements. In the case of quantized phase elements, the size of noise region plays a greater role in determining the performance of the algorithm than given intensity pattern itself. tself.

  • PDF

Substrate Utilization Patterns During BTEX Biodegradation by an o-Xylene-Degrading Bacterium Ralstonia sp. PHS1

  • Lee, Sung-Kuk;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.909-915
    • /
    • 2002
  • The biodegradation of BTEX components (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene) individually and in mixtures was investigated using the o-xylene-degrading thermo-tolerant bacterium Ralsronia sp. strain PHS1 , which utilizes benzene, toluene, ethylbenzene, or o-xylene as its sole carbon source. The results showed that as a single substrate for growth, benzene was superior to both toluene and ethylbenzene. While growth inhibition was severe at higher o-xylene concentrations, no inhibition was observed (up to 100 mg $l^-1$) with ethylbenzene. In mixtures of BTEX compounds, the PHS1 culture was shown to degrade all six BTEX components and the degradation rates were in the order of benzene, toluene, o-xylene, ethylbenzene, and m- and p-xylene. m-Xylene and p-xylene were found to be co-metabolized by this microorganism in the presence of the growth-supporting BTEX compounds. In binary mixtures containing the growth substrates (benzene, toluene, ethylbenzene. and o-xylene), PHS1 degraded each BTEX compound faster when it was alone than when it was a component of a BTEX mixture, although the degree of inhibition varied according to the substrates in the mixtures. p-Xylene was shown to be the most potent inhibitor of BTEX biodegradation in binary mixtures. On the other hand, the degradation rates of the non-growth substrates (m-xylene and p-xylene) were significantly enhanced by the addition of growth substrates. The substrate utilization patterns between PHS1 and other microorganisms were also examined.

Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP) (방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출)

  • Lee, Hee-Jae;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.692-702
    • /
    • 2017
  • Face detection using the LBP based feature descriptor has issues in that it can not represent spatial information between facial shape and facial components such as eyes, nose and mouth. To address these issues, in previous research, a facial image was divided into a number of square sub-regions. However, since the sub-regions are divided into different numbers and sizes, the division criteria of the sub-region suitable for the database used in the experiment is ambiguous, the dimension of the LBP histogram increases in proportion to the number of sub-regions and as the number of sub-regions increases, the sensitivity to facial orientation rotation increases significantly. In this paper, we present a novel facial region segmentation method that can solve in-plane rotation issues associated with LBP based feature descriptors and the number of dimensions of feature descriptors. As a result, the proposed method showed detection accuracy of 99.0278% from a single facial image rotated in orientation.

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.

Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier (Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색)

  • Son, Jung Eun;Ko, Byoung Chul;Nam, Jae Yeal
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.273-280
    • /
    • 2013
  • This paper presents novel OCS-LBP (Oriented Center Symmetric Local Binary Patterns) based on orientation of pixel gradient and image retrieval system based on BoF (Bag-of-Feature) and random forest classifier. Feature vectors extracted from training data are clustered into code book and each feature is transformed new BoF feature using code book. BoF features are applied to random forest for training and random forest having N classes is constructed by combining several decision trees. For testing, the same OCS-LBP feature is extracted from a query image and BoF is applied to trained random forest classifier. In contrast to conventional retrieval system, query image selects similar K-nearest neighbor (K-NN) classes after random forest is performed. Then, Top K similar images are retrieved from database images that are only labeled K-NN classes. Compared with other retrieval algorithms, the proposed method shows both fast processing time and improved retrieval performance.

MSER-based Character detection using contrast differences in natural images (자연 이미지에서 명암차이를 이용한 MSER 기반의 문자 검출 기법)

  • Kim, Jun Hyeok;Lee, Sang Hun;Lee, Gang Seong;Kim, Ki Bong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.27-34
    • /
    • 2019
  • In this paper, we propose a method to remove the background area by analyzing the pattern of the character area. In the character detection result of the MSER(Maximally Stable External Regions) method which distinguishes a region having a constant contrast background regions were detected. To solve this problem, we use the MSER method in natural images, the background is removed by calculating the change rate by searching the character area and the background area which are not different from the areas where the contrast values are different from each other. However, in the background removed image, using the LBP(Local Binary Patterns) method, the area with uniform values in the image was determined to be a character area and character detection was performed. Experiments were carried out with simple images with backgrounds, images with frontal characters, and images with slanted images. The proposed method has a high detection rate of 1.73% compared with the conventional MSER and MSER + LBP method.

Symbolic Substitution Based on Optical Correlator for Optical Parallel Addition with Redundant Binary Number (잉여 이진수 광병렬 가산을 위한 광상관 기호치환)

  • 노덕수;김정우;조웅호;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.269-280
    • /
    • 1996
  • We proposed a symbolic substitution method based on an optical correlator for an optical parallel addition. In the proposed symbolic substitution method, we used redundant binary number of the symbolic substitution rules as a number system and chose MAC3E filter which had very low sidelobes and good correlation peak compared with SDF filter as the optical correlation filter. We encoeded input numbers property to increase the discrimination capability and divided inpt patterns into 5 groups of the same addition results to minimize the number of symbolic substitution rules. Through the computer simulation, we confirmed the proposed method was suitable to implement the optical parallel adder.

  • PDF

Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management (개선된 데이터마이닝을 위한 혼합 학습구조의 제시)

  • Kim, Steven H.;Shin, Sung-Woo
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

Development of Classification System for Thermal Comfort Behavior of Pigs by Image Processing and Neural Network (영상처리와 인공신경망을 이용한 돼지의 체온조절행동 분류 시스템 개발)

  • 장동일;임영일;장홍희
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-438
    • /
    • 1999
  • The environmental control based on interactive thermoregulatory behavior for swine production has many advantages over the conventional temperature-based control methods. Therefore, this study was conducted to compare various feature selection methods using postural images of growing pigs under various environmental conditions. A color CCD camera was used to capture the behavioral images which were then modified to binary images. The binary images were processed by thresholding, edge detection, and thinning techniques to separate the pigs from their background. Following feature were used for the input patterns to the neural network ; \circled1 perimeter, \circled2 area, \circled3 Fourier coefficients (5$\times$5), \circled4 combination of (\circled1 + \circled2), \circled5 combination of (\circled1 + \circled3), \circled6 combination of (\circled2 + \circled3), and \circled7 combination of (\circled1 + \circled2 + \circled3). Using the above each input pattern, the neural network could classify training images with the success rates of 96%, 96%, 96%, 100%, 100%, 96%, 100%, and testing images with those of 88%, 86%, 93%, 96%, 91%, 90%, 98%, respectively. Thus, the combination of perimeter, area and Fourier coefficients of the thinning images as neural network features gave the best performance (98%) in the behavioral classification.

  • PDF