• 제목/요약/키워드: Binary Patterns

검색결과 262건 처리시간 0.037초

Binary Nature Revealed in Circumstellar Spiral-Shell Patterns

  • Kim, Hyosun;Hsieh, I-Ta;Liu, Sheng-Yuan;Taam, Ronald E.
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.56.1-56.1
    • /
    • 2014
  • With the advent of high-resolution high-sensitivity observations, spiral patterns have been revealed around several asymptotic giant branch (AGB) stars. Such patterns can provide possible evidence for the existence of central binary stars embedded in outflowing circumstellar envelopes. It is, however, not generally recognized that the binary induced pattern, vertically extended from the orbital plane, exhibits a ring-like pattern with an inclined viewing angle. I will first review the binary-induced spiral-shell patterns on the AGB circumstellar envelopes with the effect of inclination angle with respect to the orbital plane, of which large inclination cases reveal incomplete ring-like patterns. I will describe a method of extracting such spiral-shell from the gas kinematics of an incomplete ring-like pattern to place constraints on the characteristics of the (unknown) central binary stars. This first success may open the possibility of connecting the ring-like patterns commonly found in the AGB circumstellar envelopes and in the outer parts of (pre-)planetary nebulae and pointing to the conceivable presence of central binary systems, which may give a clue for the onset of asymmetrical planetary nebulae.

  • PDF

유전 알고리듬을 이용한 이진 트리 분류기의 설계와 냉연 흠 분류에의 적용 (Design of a binary decision tree using genetic algorithm for recognition of the defect patterns of cold mill strip)

  • 김경민;이병진;류경;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.98-103
    • /
    • 2000
  • This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.

  • PDF

DESIGN OF A BINARY DECISION TREE FOR RECOGNITION OF THE DEFECT PATTERNS OF COLD MILL STRIP USING GENETIC ALGORITHM

  • Lee, Byung-Jin;Kyoung Lyou;Park, Gwi-Tae;Kim, Kyoung-Min
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.208-212
    • /
    • 1998
  • This paper suggests the method to recognize the various defect patterns of cold mill strip using binary decision tree constructed by genetic algorithm automatically. In case of classifying the complex the complex patterns with high similarity like the defect patterns of cold mill strip, the selection of the optimal feature set and the structure of recognizer is important for high recognition rate. In this paper genetic algorithm is used to select a subset of the suitable features at each node in binary decision tree. The feature subset of maximum fitness is chosen and the patterns are classified into two classes by linear decision function. After this process is repeated at each node until all the patterns are classified respectively into individual classes. In this way , binary decision tree classifier is constructed automatically. After construction binary decision tree, the final recognizer is accomplished by the learning process of neural network using a set of standard p tterns at each node. In this paper, binary decision tree classifier is applied to recognition of the defect patterns of cold mill strip and the experimental results are given to show the usefulness of the proposed scheme.

  • PDF

회전에 강인한 고속 이진패턴을 이용한 실시간 교통 신호 표지판 인식 (Real-time Traffic Sign Recognition using Rotation-invariant Fast Binary Patterns)

  • 황민철;고병철;남재열
    • 방송공학회논문지
    • /
    • 제21권4호
    • /
    • pp.562-568
    • /
    • 2016
  • 본 논문에서는 다양한 교통 표지판 중에서 운전자의 안전운행에 밀접하게 관계가 있는 속도 표지판을 인식하는 연구에 초점을 맞추고 있다. HOG (histogram of gradient)와 LBP (local binary patterns) 가 객체 인식을 위한 대표적 특징이지만, 이러한 특징들은 패턴을 생성할 때 목표 객체의 회전을 고려하지 않음으로써 객체의 회전에 약한 특성을 가지고 있다. 따라서 본 논문에서는 회전에 강인한 이진 패턴을 생성하기 위해 FRIBP (fast rotation-invariant binary patterns)를 제안하고 있다. 본 논문에서 제안하는 FRIBP 알고리즘은 히스토그램에서 불필요한 레이어를 삭제하고 비교연산과 시프트 연산을 제거하여 빠르게 원하는 특징을 추출할 수 있도록 설계되었다. 제안된 FRIBP 알고리즘은 GTSRB (German Traffic Sign Recognition Benchmark) 데이터에 적용되어, 다른 비교 알고리즘과 유사한 성능을 보여주었다. 또한, 12,630개의 테스트 데이터에 대해 기존의 방법들보다 약 0.47초가 향상된 인식 속도를 보여주었다.

냉연 표면 흠 분류를 위한 특징선정 및 이진 트리 분류기의 설계에 관한 연구 (A Study on The Feature Selection and Design of a Binary Decision Tree for Recognition of The Defect Patterns of Cold Mill Strip)

  • 이병진;류경;박귀태;김경민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2330-2332
    • /
    • 1998
  • This paper suggests a method to recognize the various defect patterns of cold mill strip using binary decision tree automatically constructed by genetic algorithm. The genetic algorithm and K-means algorithm were used to select a subset of the suitable features at each node in binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes by a linear decision boundary. This process was repeated at each node until all the patterns are classified into individual classes. The final recognizer is accomplished by neural network learning of a set of standard patterns at each node. Binary decision tree classifier was applied to the recognition of the defect patterns of cold mill strip and the experimental results were given to demonstrate the usefulness of the proposed scheme.

  • PDF

연속음성중 키워드(Keyword) 인식을 위한 Binary Clustering Network (Binary clustering network for recognition of keywords in continuous speech)

  • 최관선;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.870-876
    • /
    • 1993
  • This paper presents a binary clustering network (BCN) and a heuristic algorithm to detect pitch for recognition of keywords in continuous speech. In order to classify nonlinear patterns, BCN separates patterns into binary clusters hierarchically and links same patterns at root level by using the supervised learning and the unsupervised learning. BCN has many desirable properties such as flexibility of dynamic structure, high classification accuracy, short learning time, and short recall time. Pitch Detection algorithm is a heuristic model that can solve the difficulties such as scaling invariance, time warping, time-shift invariance, and redundance. This recognition algorithm has shown recognition rates as high as 95% for speaker-dependent as well as multispeaker-dependent tests.

  • PDF

잡음성분을 포함한 한글 문자 인식 (Recognition of Hangul Characters with Input Noise)

  • 장신영;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.465-469
    • /
    • 1990
  • This thesis proposes a new scheme for the recognition of presegmented Hangul characters. The proposed approach is rather insensitive to noise and variation by applying 2 dimensional convolution to learning patterns. In this thesis, the hangul recognition neural network is implemented in the basis of this scheme and recognition rate is analyzed in boo cases of learning which are learning by binary patterns and learning by binary patterns and convoluted patterns together.

  • PDF

LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색 (Content-based Image Retrieval using LBP and HSV Color Histogram)

  • 이권;이철희
    • 방송공학회논문지
    • /
    • 제18권3호
    • /
    • pp.372-379
    • /
    • 2013
  • 본 논문에서는 LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색 방법을 제안한다. 영상 검색 시스템에서는 텍스트가 아닌 사용자가 원하는 특정한 객체를 포함하는 영상을 질의로 입력하여 원하는 영상을 검색한다. 대부분의 연구에서는 색상, 질감, 모양 등과 같은 전역 특징 값을 이용하여 영상을 검색한다. 이러한 전역 특징 값들은 하늘이나 바닥과 같은 배경이 큰 부분을 차지하는 영상에서는 특징 값의 대부분이 배경에서 추출되어 영상 검색의 성능 저하를 초래한다. 이러한 문제를 해결하기 위해, 컬러를 이용하여 영상의 배경을 고속으로 검출하고 배경의 영향을 줄여 관심 객체의 특징을 강조한다. 제안된 방법에서는 특징 값으로 HSV 컬러 히스토그램과 Local Binary Patterns을 사용한다. 또한, 색의 경계 부분의 패턴을 추출하기 위해 양자화 된 Hue 채널에서 Local Binary Patterns을 추출한다. 제안된 알고리즘의 성능 검증하기 위해, Corel 1000 database를 이용하여 실험한 결과 82% 이상의 높은 검색 정확도를 나타내었다.

A Novel Approach for Mining High-Utility Sequential Patterns in Sequence Databases

  • Ahmed, Chowdhury Farhan;Tanbeer, Syed Khairuzzaman;Jeong, Byeong-Soo
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.676-686
    • /
    • 2010
  • Mining sequential patterns is an important research issue in data mining and knowledge discovery with broad applications. However, the existing sequential pattern mining approaches consider only binary frequency values of items in sequences and equal importance/significance values of distinct items. Therefore, they are not applicable to actually represent many real-world scenarios. In this paper, we propose a novel framework for mining high-utility sequential patterns for more real-life applicable information extraction from sequence databases with non-binary frequency values of items in sequences and different importance/significance values for distinct items. Moreover, for mining high-utility sequential patterns, we propose two new algorithms: UtilityLevel is a high-utility sequential pattern mining with a level-wise candidate generation approach, and UtilitySpan is a high-utility sequential pattern mining with a pattern growth approach. Extensive performance analyses show that our algorithms are very efficient and scalable for mining high-utility sequential patterns.

Finger Vein Recognition Using Generalized Local Line Binary Pattern

  • Lu, Yu;Yoon, Sook;Xie, Shan Juan;Yang, Jucheng;Wang, Zhihui;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1766-1784
    • /
    • 2014
  • Finger vein images contain rich oriented features. Local line binary pattern (LLBP) is a good oriented feature representation method extended from local binary pattern (LBP), but it is limited in that it can only extract horizontal and vertical line patterns, so effective information in an image may not be exploited and fully utilized. In this paper, an orientation-selectable LLBP method, called generalized local line binary pattern (GLLBP), is proposed for finger vein recognition. GLLBP extends LLBP for line pattern extraction into any orientation. To effectually improve the matching accuracy, the soft power metric is employed to calculate the matching score. Furthermore, to fully utilize the oriented features in an image, the matching scores from the line patterns with the best discriminative ability are fused using the Hamacher rule to achieve the final matching score for the last recognition. Experimental results on our database, MMCBNU_6000, show that the proposed method performs much better than state-of-the-art algorithms that use the oriented features and local features, such as LBP, LLBP, Gabor filter, steerable filter and local direction code (LDC).