International Journal of Control, Automation, and Systems
/
제6권4호
/
pp.488-494
/
2008
This paper proposes an effective approach based on binary coding Particle Swarm Optimization (PSO) to identify the switching operation plan for feeder reconfiguration. The proposed method considers the advantages and disadvantages of existing particle swarm optimization method and redefined the operators of PSO algorithm to fit the application field of distribution systems. Shift operator is proposed to construct the binary coding particle swarm optimization for feeder reconfiguration. A typical distribution system of Taiwan Power Company is used in this paper to demonstrate the effectiveness of the proposed method. The test results show that the proposed method can apply to feeder reconfiguration problems more effectively and stably than existing method.
본 논문에서는 유전알고리즘의 유전자형-표현형 기법을 적용한 수정된 이진 입자군집최적화의 두 번째 버전을 소개한다. 입자군집최적화는 해를 탐색해 나가는 과정에서 주변의 우수한 해의 위치와 자신의 위치차이 정보를 이용한다. 이러한 위치 차이를 구하는데 있어서 첫 번째 버전의 수정된 이진 입자군집최적화는 표현형을 사용한 반면에 제안하는 버전은 유전자형을 사용한다. 이진 정보만을 제공하는 표현형에 비해 연속 공간 전체를 탐색공간으로 제공하는 유전자형 정보를 사용하여 해 공간을 보다 넓은 공간으로 표시할 수 있다. 벤치마크 함수인 10개의 De Jong 함수에 실험한 결과, 두 번째 버전은 탐색 공간이 넓고 지역 최적해가 많은 함수에서 첫 번째 버전에 보다 우수한 결과를 얻었다.
본 논문은 무선 센서 네트워크의 분산 분포되어 있는 센서 노드들의 측위를 위해 Binary Particle Swarm Optimization (BPSO) 알고리즘을 제안한다. 자신의 위치를 모르는 센서 노드들은 셋 이상의 인접한 앵커, 즉, 위치를 알고 있는 노드들로부터의 거리를 측정하여 측위를 수행한다. 이러한 과정이 반복하는 동안 측위를 수행한 센서 노드들은 나머지 노드들에 대하여 또 다른 앵커 역할을 수행한다. 성능 평가를 위해 기존의 PSO 알고리즘에 대비하여, BPSO를 이용한 측위 오류 및 계산 시간 성능을 매트랩 시뮬레이션을 통해 비교 분석하였다. 시뮬레이션 결과 PSO 기반의 측위가 상대적으로 더 정확한 결과를 보여준다. 대조적으로, BPSO 알고리즘은 분산되어 있는 센서 노드들의 위치 측위를 더 빠르게 수행한다. 추가적으로, 전송 범위와 초기 앵커 노드들의 수가 측위 성능에 미치는 영향에 대한 분석을 수행한다.
죄수 딜레마 게임은 게임 이론의 대표적인 사례로 많은 경제학자, 사회과학자 및 컴퓨터 과학자가 관심을 가지고 연구하고 있다. 근래에는 죄수 딜레마 게임 분석을 위해 유전 알고리즘, 입자 군집 최적화 등의 진화 연산 기법을 적용한 계산적 접근에 대한 연구가 활발히 이루어져 왔다. 본 연구에서는 3가지의 서로 다른 이진입자 군집 최적화 기법을 사용하여 2명 또는 그 이상의 플레이어가 참여하는 반복 죄수 딜레마 게임에 대한 전략을 진화시켜보고자 한다. 반복 죄수 딜레마 게임에 3가지 버전의 이진 입자 군집 최적화를 적용하여 실험한 결과 자신의 이득을 최대화하기 위한 이기적인 참가들 사이에서도 상호 협력 관계가 구축될 수 있음을 확인하였나 참여자가 많을수록 상호 협력 관계가 구축이 어려워 짐을 확인하였다.
본 논문에서는 BPSO(Binary Particle Swarm Optimization)방법과 상호정보량을 이용한 속성선택기법을 제안한다. 제안된 방법은 상호정보량을 이용한 후보속성부분집합을 선택하는 단계와 BPSO를 이용한 최적의 속성부분집합을 선택하는 단계로 구성되어 있다. 후보속성부분집합 선택 단계에서는 독립적으로 속성들의 상호정보량을 평가하여 순위별로 설정된 수 만큼 후보속성들을 선택한다. 최적속성부분집합 선택 단계에서는 BPSO를 이용하여 후보속성부분집합에서 최적의 속성부분집합을 탐색한다. BPSO의 목적함수는 분류기의 정확도와 선택된 속성 수를 포함하는 다중목적함수(Multi-Object Function)을 이용하였다. 제안된 기법의 성능을 평가하기 위하여 유전자 데이터를 사용하였으며, 실험결과 기존의 방법들에 비해 우수한 성능을 보임을 알 수 있었다.
International Journal of Computer Science & Network Security
/
제21권11호
/
pp.312-320
/
2021
Increase in computational cost and exhaustive search can lead to more complexity and computational energy. Thus, there is need for effective and efficient scheme to reduce the complexity to achieve optimal energy utilization. This will improve the energy efficiency and enhance the proficiency in terms of the resources needed to achieve convergence. This paper primarily focuses on the development of hybrid swarm intelligence scheme for reducing the computational complexity in binary optimization. In order to reduce the complexity, both artificial bee colony (ABC) and particle swarm optimization (PSO) have been employed to effectively minimize the exhaustive search and increase convergence. First, a new approach using ABC and PSO has been proposed and developed to solve the binary optimization problem. Second, the scout for good quality food sources is accomplished through the deployment of PSO in order to optimally search and explore the best source. Extensive experimental simulations conducted have demonstrate that the proposed scheme outperforms the ABC approaches for reducing complexity and energy consumption in terms of convergence, search and error minimization performance measures.
This paper presents a new approach for solving the problem of maintenance scheduling of generating units using a binary particle swarm optimization (BPSO). In this paper, we find the optimal solution of the maintenance scheduling of generating units within a specific time horizon using a binary particle swarm optimization algorithm, which is the discrete version of a conventional particle swarm optimization. It is shown that the BPSO method proposed in this paper is effective in obtaining feasible solutions in the maintenance scheduling of generating unit. IEEE reliability test systems(1996) including 32-generators are selected as a sample system for the application of the proposed algorithm. From the result, we can conclude that the BPSO can find the optimal solution of the maintenance scheduling of the generating unit with the desirable degree of accuracy and computation time, compared to other heuristic search algorithm such as genetic algorithms. It is also envisaged that BPSO can be easily implemented for similar optimizations and scheduling problems in power system problems to obtain better solutions and improve convergence performance.
본 논문은 레이돔과 같은 다층구조의 주파수 선택적 표면(frequency selective surfaces: FSS)을 설계하는데, 편파나 입사각 등 다양한 고려사항에 대한 유연성을 갖는 픽셀 형태의 주파수 선택적 표면을 설계하는 것에 관한 것이다. 픽셀 형태의 FSS를 설계할 때 이산 공간 문제를 해결할 수 있는 다양한 방법 중 이진 입자 군집 최적화(binary particle swarm optimization: BPSO) 알고리즘은 FSS의 주기구조 패턴을 결정하는데 쉽게 적용 가능한 기술 중 하나이며, 따라서 향상된 BPSO 알고리즘을 통해 롤 오프 전파 투과특성을 갖는 FSS를 효율적으로 설계하는 기법을 제안하였다. 원하는 솔루션에 입자를 유도하기 위한 적합성 함수 설계에 대하여 수렴속도 문제를 해결하기 위해, '기울기'를 입력 변수로 한 적합성 함수를 적용할 경우 쉽게 원하는 전파특성을 갖는 FSS를 얻을 수 있었다.
In modern logistics, the effective use of the vehicle volume and loading capacity will reduce the logistic cost. Many heuristic algorithms can solve this knapsack problem, but lots of these algorithms have a drawback, that is, they often fall into locally optimal solutions. A fusion optimization method based on simulated annealing algorithm (SA) and binary particle swarm optimization algorithm (BPSO) is proposed in the paper. We establish a logistics knapsack model of the fusion optimization algorithm. Then, a new model of express logistics simulation system is used for comparing three algorithms. The experiment verifies the effectiveness of the algorithm proposed in this paper. The experimental results show that the use of BPSO-SA algorithm can improve the utilization rate and the load rate of logistics distribution vehicles. So, the number of vehicles used for distribution and the average driving distance will be reduced. The purposes of the logistics knapsack problem optimization are achieved.
본 논문의 목적은 이항출력 실험을 이용할 경우에 확률적 전역 최적화 방법론들을 검토하고 알고리즘들간의 성능을 비교하기 위한 것이다. 모 성공확률은 알수 없고 확률적 특성을 갖기 때문에 확률적 전역 최적화 방법론에서는 모 성공확률 대신 성공확률의 추정치를 이용한다. 언덕오르기 알고리즘 , 단순랜덤탐색, 랜덤재출발 랜덤탐색, 랜덤 최적화, 담금질 기법 및 군집기반의 알고리즘인 입자 군집 최적화 알고리즘을 확률적 전역 최적화 알고리즘으로 사용하였다. 알고리즘의 비교를 위하여 두가지 테스트 함수(하나는 단봉이고 나머지는 다봉임)가 제안되었고 몬테카를로 시뮬레이션을 이용하여 알고리즘의 성능을 평가하였다. 단순 테스트 함수에 대하여는 모든 알고리즘이 유사한 성능을 보이고 있다. 복잡한 다봉의 테스트 함수에 대하여는 랜덤재출발 랜덤최적화, 담금질 기법과 군집 기반의 입자군집 알고리즘이 훨씬 더 좋은 성능을 보임을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.