• 제목/요약/키워드: Binary Particle Swarm Optimization

검색결과 29건 처리시간 0.019초

Feeder Reconfiguration Using Binary Coding Particle Swarm Optimization

  • Wu, Wu-Chang;Tsai, Men-Shen
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.488-494
    • /
    • 2008
  • This paper proposes an effective approach based on binary coding Particle Swarm Optimization (PSO) to identify the switching operation plan for feeder reconfiguration. The proposed method considers the advantages and disadvantages of existing particle swarm optimization method and redefined the operators of PSO algorithm to fit the application field of distribution systems. Shift operator is proposed to construct the binary coding particle swarm optimization for feeder reconfiguration. A typical distribution system of Taiwan Power Company is used in this paper to demonstrate the effectiveness of the proposed method. The test results show that the proposed method can apply to feeder reconfiguration problems more effectively and stably than existing method.

유전자형-표현형 개념을 적용한 수정된 이진 입자군집최적화 (버전 2) (Modified Binary Particle Swarm Optimization using Genotype-Phenotype Concept (Version 2))

  • 임승균;이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.541-548
    • /
    • 2014
  • 본 논문에서는 유전알고리즘의 유전자형-표현형 기법을 적용한 수정된 이진 입자군집최적화의 두 번째 버전을 소개한다. 입자군집최적화는 해를 탐색해 나가는 과정에서 주변의 우수한 해의 위치와 자신의 위치차이 정보를 이용한다. 이러한 위치 차이를 구하는데 있어서 첫 번째 버전의 수정된 이진 입자군집최적화는 표현형을 사용한 반면에 제안하는 버전은 유전자형을 사용한다. 이진 정보만을 제공하는 표현형에 비해 연속 공간 전체를 탐색공간으로 제공하는 유전자형 정보를 사용하여 해 공간을 보다 넓은 공간으로 표시할 수 있다. 벤치마크 함수인 10개의 De Jong 함수에 실험한 결과, 두 번째 버전은 탐색 공간이 넓고 지역 최적해가 많은 함수에서 첫 번째 버전에 보다 우수한 결과를 얻었다.

Binary Particle Swarm Optimization 알고리즘 기반 분산 센서 노드 측위 (Distributed Sensor Node Localization Using a Binary Particle Swarm Optimization Algorithm)

  • 이파 파티하;신수용
    • 전자공학회논문지
    • /
    • 제51권7호
    • /
    • pp.9-17
    • /
    • 2014
  • 본 논문은 무선 센서 네트워크의 분산 분포되어 있는 센서 노드들의 측위를 위해 Binary Particle Swarm Optimization (BPSO) 알고리즘을 제안한다. 자신의 위치를 모르는 센서 노드들은 셋 이상의 인접한 앵커, 즉, 위치를 알고 있는 노드들로부터의 거리를 측정하여 측위를 수행한다. 이러한 과정이 반복하는 동안 측위를 수행한 센서 노드들은 나머지 노드들에 대하여 또 다른 앵커 역할을 수행한다. 성능 평가를 위해 기존의 PSO 알고리즘에 대비하여, BPSO를 이용한 측위 오류 및 계산 시간 성능을 매트랩 시뮬레이션을 통해 비교 분석하였다. 시뮬레이션 결과 PSO 기반의 측위가 상대적으로 더 정확한 결과를 보여준다. 대조적으로, BPSO 알고리즘은 분산되어 있는 센서 노드들의 위치 측위를 더 빠르게 수행한다. 추가적으로, 전송 범위와 초기 앵커 노드들의 수가 측위 성능에 미치는 영향에 대한 분석을 수행한다.

이진 입자 군집 최적화를 이용한 반복 죄수 딜레마 게임 분석 (Analysis on Iterated Prisoner's Dilemma Game using Binary Particle Swarm Optimization)

  • 이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제20권12호
    • /
    • pp.278-286
    • /
    • 2020
  • 죄수 딜레마 게임은 게임 이론의 대표적인 사례로 많은 경제학자, 사회과학자 및 컴퓨터 과학자가 관심을 가지고 연구하고 있다. 근래에는 죄수 딜레마 게임 분석을 위해 유전 알고리즘, 입자 군집 최적화 등의 진화 연산 기법을 적용한 계산적 접근에 대한 연구가 활발히 이루어져 왔다. 본 연구에서는 3가지의 서로 다른 이진입자 군집 최적화 기법을 사용하여 2명 또는 그 이상의 플레이어가 참여하는 반복 죄수 딜레마 게임에 대한 전략을 진화시켜보고자 한다. 반복 죄수 딜레마 게임에 3가지 버전의 이진 입자 군집 최적화를 적용하여 실험한 결과 자신의 이득을 최대화하기 위한 이기적인 참가들 사이에서도 상호 협력 관계가 구축될 수 있음을 확인하였나 참여자가 많을수록 상호 협력 관계가 구축이 어려워 짐을 확인하였다.

상호정보량과 Binary Particle Swarm Optimization을 이용한 속성선택 기법 (Feature Selection Method by Information Theory and Particle S warm Optimization)

  • 조재훈;이대종;송창규;전명근
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.191-196
    • /
    • 2009
  • 본 논문에서는 BPSO(Binary Particle Swarm Optimization)방법과 상호정보량을 이용한 속성선택기법을 제안한다. 제안된 방법은 상호정보량을 이용한 후보속성부분집합을 선택하는 단계와 BPSO를 이용한 최적의 속성부분집합을 선택하는 단계로 구성되어 있다. 후보속성부분집합 선택 단계에서는 독립적으로 속성들의 상호정보량을 평가하여 순위별로 설정된 수 만큼 후보속성들을 선택한다. 최적속성부분집합 선택 단계에서는 BPSO를 이용하여 후보속성부분집합에서 최적의 속성부분집합을 탐색한다. BPSO의 목적함수는 분류기의 정확도와 선택된 속성 수를 포함하는 다중목적함수(Multi-Object Function)을 이용하였다. 제안된 기법의 성능을 평가하기 위하여 유전자 데이터를 사용하였으며, 실험결과 기존의 방법들에 비해 우수한 성능을 보임을 알 수 있었다.

Enhanced Hybrid XOR-based Artificial Bee Colony Using PSO Algorithm for Energy Efficient Binary Optimization

  • Baguda, Yakubu S.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.312-320
    • /
    • 2021
  • Increase in computational cost and exhaustive search can lead to more complexity and computational energy. Thus, there is need for effective and efficient scheme to reduce the complexity to achieve optimal energy utilization. This will improve the energy efficiency and enhance the proficiency in terms of the resources needed to achieve convergence. This paper primarily focuses on the development of hybrid swarm intelligence scheme for reducing the computational complexity in binary optimization. In order to reduce the complexity, both artificial bee colony (ABC) and particle swarm optimization (PSO) have been employed to effectively minimize the exhaustive search and increase convergence. First, a new approach using ABC and PSO has been proposed and developed to solve the binary optimization problem. Second, the scout for good quality food sources is accomplished through the deployment of PSO in order to optimally search and explore the best source. Extensive experimental simulations conducted have demonstrate that the proposed scheme outperforms the ABC approaches for reducing complexity and energy consumption in terms of convergence, search and error minimization performance measures.

이진 PSO 알고리즘의 발전기 보수계획문제 적용 (An Application of a Binary PSO Algorithm to the Generator Maintenance Scheduling Problem)

  • 박영수;김진호
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1382-1389
    • /
    • 2007
  • This paper presents a new approach for solving the problem of maintenance scheduling of generating units using a binary particle swarm optimization (BPSO). In this paper, we find the optimal solution of the maintenance scheduling of generating units within a specific time horizon using a binary particle swarm optimization algorithm, which is the discrete version of a conventional particle swarm optimization. It is shown that the BPSO method proposed in this paper is effective in obtaining feasible solutions in the maintenance scheduling of generating unit. IEEE reliability test systems(1996) including 32-generators are selected as a sample system for the application of the proposed algorithm. From the result, we can conclude that the BPSO can find the optimal solution of the maintenance scheduling of the generating unit with the desirable degree of accuracy and computation time, compared to other heuristic search algorithm such as genetic algorithms. It is also envisaged that BPSO can be easily implemented for similar optimizations and scheduling problems in power system problems to obtain better solutions and improve convergence performance.

개선된 이진 입자 군집 최적화 알고리즘을 적용한 픽셀 형태 주파수 선택적 표면의 효율적인 설계방안 연구 (Effective Design of Pixel-type Frequency Selective Surfaces using an Improved Binary Particle Swarm Optimization Algorithm)

  • 양대도;박찬선;육종관
    • 한국전자파학회논문지
    • /
    • 제30권4호
    • /
    • pp.261-269
    • /
    • 2019
  • 본 논문은 레이돔과 같은 다층구조의 주파수 선택적 표면(frequency selective surfaces: FSS)을 설계하는데, 편파나 입사각 등 다양한 고려사항에 대한 유연성을 갖는 픽셀 형태의 주파수 선택적 표면을 설계하는 것에 관한 것이다. 픽셀 형태의 FSS를 설계할 때 이산 공간 문제를 해결할 수 있는 다양한 방법 중 이진 입자 군집 최적화(binary particle swarm optimization: BPSO) 알고리즘은 FSS의 주기구조 패턴을 결정하는데 쉽게 적용 가능한 기술 중 하나이며, 따라서 향상된 BPSO 알고리즘을 통해 롤 오프 전파 투과특성을 갖는 FSS를 효율적으로 설계하는 기법을 제안하였다. 원하는 솔루션에 입자를 유도하기 위한 적합성 함수 설계에 대하여 수렴속도 문제를 해결하기 위해, '기울기'를 입력 변수로 한 적합성 함수를 적용할 경우 쉽게 원하는 전파특성을 갖는 FSS를 얻을 수 있었다.

Optimization Method of Knapsack Problem Based on BPSO-SA in Logistics Distribution

  • Zhang, Yan;Wu, Tengyu;Ding, Xiaoyue
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.665-676
    • /
    • 2022
  • In modern logistics, the effective use of the vehicle volume and loading capacity will reduce the logistic cost. Many heuristic algorithms can solve this knapsack problem, but lots of these algorithms have a drawback, that is, they often fall into locally optimal solutions. A fusion optimization method based on simulated annealing algorithm (SA) and binary particle swarm optimization algorithm (BPSO) is proposed in the paper. We establish a logistics knapsack model of the fusion optimization algorithm. Then, a new model of express logistics simulation system is used for comparing three algorithms. The experiment verifies the effectiveness of the algorithm proposed in this paper. The experimental results show that the use of BPSO-SA algorithm can improve the utilization rate and the load rate of logistics distribution vehicles. So, the number of vehicles used for distribution and the average driving distance will be reduced. The purposes of the logistics knapsack problem optimization are achieved.

이항 반응 실험의 확률적 전역최적화 기법연구 (A Study on the Stochastic Optimization of Binary-response Experimentation)

  • 이동훈;황근철;이상일;윤원영
    • 한국시뮬레이션학회논문지
    • /
    • 제32권1호
    • /
    • pp.23-34
    • /
    • 2023
  • 본 논문의 목적은 이항출력 실험을 이용할 경우에 확률적 전역 최적화 방법론들을 검토하고 알고리즘들간의 성능을 비교하기 위한 것이다. 모 성공확률은 알수 없고 확률적 특성을 갖기 때문에 확률적 전역 최적화 방법론에서는 모 성공확률 대신 성공확률의 추정치를 이용한다. 언덕오르기 알고리즘 , 단순랜덤탐색, 랜덤재출발 랜덤탐색, 랜덤 최적화, 담금질 기법 및 군집기반의 알고리즘인 입자 군집 최적화 알고리즘을 확률적 전역 최적화 알고리즘으로 사용하였다. 알고리즘의 비교를 위하여 두가지 테스트 함수(하나는 단봉이고 나머지는 다봉임)가 제안되었고 몬테카를로 시뮬레이션을 이용하여 알고리즘의 성능을 평가하였다. 단순 테스트 함수에 대하여는 모든 알고리즘이 유사한 성능을 보이고 있다. 복잡한 다봉의 테스트 함수에 대하여는 랜덤재출발 랜덤최적화, 담금질 기법과 군집 기반의 입자군집 알고리즘이 훨씬 더 좋은 성능을 보임을 알 수 있다.