• 제목/요약/키워드: Bimaterials composite

검색결과 2건 처리시간 0.014초

인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가 (Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process)

  • 이학성;강신재
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

잔류응력을 고려한 광탄성실험의 광응력법칙 개발에 관한 연구 (1) (A Study on the Development of Stress Optic Law Considering Residual Stress in Photo elastic Experiment(I))

  • 서재국;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1190-1201
    • /
    • 1995
  • Photoelastic experiment has been restricted by three significant problems such as the problems of modeling for a complicated body, of development of experimental model material, and of residual stress in photoelastic specimen. The residual stress in photoelastic model materials is caused by molding, cutting and time effects, etc.. Especially, large residual stress exists on the interface of photoelastic model material for bi-material. Small residual stress occurred in the photoelastic model materials is usually neglected in the photoelastic experiments. But the residual stress provides some errors in the results of photoelastic experiments. In this paper, the stress optic law which can be effectively applied to the phtoelastic model materials with residual stress is developed. By using this stress optic law, we can obtain good results from isochromatic fringe patterns of photoelastic experiment specimen in which residual stress are involved. The stress optic law can be applied to obtain good results of photoelastic experiment from composite materials or bimaterials.