• 제목/요약/키워드: Billet Rolling

검색결과 28건 처리시간 0.027초

The effect of mechanical working on processing the Bi-2223/Ag tapes using PIT method

  • Oh, S.S.;Ha, D.W.;Kim, S.C.;Bae, S.W.;Kwon, Y.K.;Ryu, K.S.;Ha, H.S.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.276-279
    • /
    • 2000
  • When high temperature superconducting tapes is fabricated using the PIT (Powder In Tube) method, the length of HTS tapes is increased more than 500 ${\sim}$ 1,000 times of initial powder packed billet. On mechanical processing, heterogeneous properties between the ceramic superconducting core and Ag/Ag alloy sheath occur the non-uniformity deformation as like sausaging that deteriorate the critical current properties of HTS tapes. In this study, we investigated the workability of Bi-2223/Ag/Ag alloy sheath tapes fabricated by the PIT method involving a number of different mechanical processes, multi drawing and rolling. In order to obtain the high critical current density and high uniformity of Bi-2223/Ag sheath tapes, the influences of powder packing density, drawing die angle and rolling parameters were studied. We found that the roll diameter is an important variable in the rolling process, as critical current of tapes rolled using 250 mm rolls was higher than that using 150 mm rolls.

  • PDF

Temperature Control of a Reheating Furnace using Feedback Linearization and Predictive Control

  • Park, Jae-Hun;Jang, Yu-Jin;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.27.1-27
    • /
    • 2001
  • Reheating furnace is a facility of heating up the billet to desired high temperature in the hot charge rolling process and it consists of 3 zones. Temperature control of reheating furnace is essential for successful rolling performance and high productivity. Mostly, temperature control is carried out using PID controller However, the PID control is not effective due to the nonlinearity of the reheating furnace(i.e, presence of the interference of neighboring zones and slow response of temperature etc.). In this paper, feedback linearization method is applied to obtain a linear model of the reheating furnace. Then, controller is designed using simple predictive control method. The effectiveness of this strategy is shown through simulations.

  • PDF

반응고법에 의한 금속복합재료의 제조 및 성형 시스템의 개발 (Fabrication of Metal Matrix Composites and Development of Forming System in Mashy State)

  • 강충길;김현우;김영도
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.581-593
    • /
    • 1990
  • 본 연구에서는 교반기술에 의하여 얻어진 반응고상태의 금속에 단섬유를 첨가 하여 복합재료를 제조하였다. 그리고 제조되어진 복합재료에 있어서 섬유의 분산상 태및 기지재와의 접합관계를 조사하여 압연가공에 필요한 반응고상태인 금속복합재료 의 제조방법을 확립하였다. 균일하게 분실되어진 반용융상태의 단섬유강화형 금속복 합재료를 직접 압연하여 박판을 제조할 수 있는 가능성을 검토하였으며, 또한 제조되 어진 박판의 인장시험에 의하여 기계적 성질을 조사하였다.

플래시버트 용접과 연속열간압연법으로 제조된 철근의 기계적 성질과 미세조직에 미치는 합금원소의 영향 (Effect of Alloying Elements on Mechanical Properties and Microstructure of Steel Bar Fabricated by Endless Bar Rolling System with Flash Butt Welding)

  • 김기원;조승재;강정윤
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.52-59
    • /
    • 2009
  • Flash butt welding is applied in many industries. New technology was developed recently for joining billets which called "EBROS (Endless Bar Rolling System)". After reheating billets in furnace, two billets were joined using flash butt welding. The objective of this study was to investigate the effect of alloying elements on mechanical properties of flash butt welded zone of hot rolled steel bar. The tensile properties on welded zone of Fe-Mn steel and Fe-Mn-V steel were dropped as compared with non-welded zone. Fe-Mn-Nb steel was opposed to the former. It was found that the white band at the welded zone had high ferrite volume fraction and large ferrite grain size. The vertical white band between flash butt welded billets was transformed into an arrowhead it of steel bar. According to this band, softening has been appeared. There was a interesting phenomenon with HAZ of Fe-Mn-Nb Steel, 40nm scale of particles were observed and hardness of HAZ was higher than non-welded zone.

베어링레이스의 온간성형에서 UBET 해석에 의한 공정개선 및 유동구속조건의 향상 (The Improvement of Bearing-Race Forming Process Using UBET Analysis)

  • 김영호;배원병;박재우
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.92-100
    • /
    • 1997
  • An upper-bound elemental technique (UBET) analysis is carried out to improve the material flow and to reduce the load of bearing-race forming process. The UBET analysis, which adapts the advantages of stream function and finite element method, is useful for predicting the profile of complex geometric bound- ary. From the UBET analysis, the forming load, the velocity distribution and the stream line of the deformed billet are determined by minimizing the total power consumption with respect to chosen parameters. The results of present UBET analysis are better than those of previous UBET analysis. Experiments have been carried out with model material plasticine billets at room temperature. The theoretical predictions for forming load and flow pattern(stream line) are in good agreement with the experimental results.

  • PDF

냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향 (Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming)

  • 김남규;박상덕;김병옥;최회진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

In-Line Trimming Shear 개발 (Development of In-Line Trimming Shear)

  • 이종일;강성구;서경수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.119-125
    • /
    • 1999
  • At Wire Rod Mill Plant, wire is made of the billet produced at continuous casting machine, or rolled bloom produced at billeting mill, and the product can be classified of wire of 5.5${\Phi}$ and bar in coil of 14∼42${\Phi}$ in diameter(bar in coil will be referred to as coil as below). At present, wire is produced at POSCO No.1, 2, 3 WRM, coil at garret line of No. 2 WRM. Head and tail of coil are properly cut and treated to scrap to fulfill the customer's satisfaction. This above cutting is done off line, and small size coil can be cut manually with clipper, large size coil with hydraulic cutter. Nowadays, it is being investigated to cut automatically in line with trimming shear after passing mill stand. At the moment, Because the coil produced at the garret line of No.2 WRM is hot 400∼600$^{\circ}C$ and trimming is done manually with cutter, there are always interference from manual operation or safety problem of bad working condition. Not only because of the diversity of the coil size 14∼42${\Phi}$ in diameter, but because of the rolling speed 2.5∼22m/sec, it is required to be equipped with several trimming shear. But this can be accomplished with only one shear installed proper place at this paper.

  • PDF

가스분무주조 Cu-Sn-Ni-Si 합금의 미세조직 및 상온 인장성질 (Microstructure and Tensile Properties of Spray Cast Cu-Sn-Ni-Si Alloy)

  • 강희수;이언식;이규창;백경호
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.470-476
    • /
    • 2010
  • In this study, Cu-10Sn and Cu-10Sn-2Ni-0.2Si alloys have been manufactured by spray casting in order to achieve a fine scale microstructure and high tensile strength, and investigated in terms of microstructural evolution, aging characteristics and tensile properties. Spray cast alloys had a much lower microhardness than continuous cast billet because of an improved homogenization and an extended Sn solid solubility. Spray cast Cu-Sn-Ni-Si alloy was characterized by an equiaxed grain microstructure with a small-sized (Ni, Si)-rich precipitates. Cold rolling of Cu-Sn-Ni-Si alloy increased a tensile strength to 1220 MPa, but subsequent ageing treatment reduced a ultimate tensile strength to 780 MPa with an elongation of 18%.