• Title/Summary/Keyword: Billet Rolling

Search Result 28, Processing Time 0.027 seconds

Dimensional Accuracies of Cold-Forged Spur Gears (냉간단조 스퍼어기어의 치수정밀도)

  • 이정환;이영선;박종진
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.115-121
    • /
    • 1996
  • Recently it is attempted to manufacture gears by various cold forging methods to meet requirements of mass production and uniform qualities. Compared to machined gears cold forged ears reveal higher tooth strength and better surface roughness but they reveal lower geometrical accuracies. Therefore in the present study a series of experiments are performed to investigate relations between geometrical accuracies of dies and billet and those of the final product. The geometrical accuracies of forged gears are considered through functional gear-element tolerances by measuring pitch error profile error lead error radial error tooth thickness and rolling test. Results of the experiments can be summarized as follows: (1) involute spur gears of KS 5(or AGMA7) accuracies can be made,(2) concentricity of die set should be maintained within 0.01mm (3) clearance between the billet and die set should be less than 0.1mm (4) con-centricity and radial runout should be less than 0.08mm and 0.1mm respectively. However it is thought that FEM analysis of elastic/thermal deformations of dies and the billet is necessary for a better understanding of the findings obtained through the present study.

  • PDF

Process Design for Profile Ring Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 형상 링 압연 공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.357-360
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was designed by finite element(FE) simulation and experimental analysis. The design includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

Development of character recognition system for the mixed font style in the steel processing material

  • Lee, Jong-Hak;Park, Sang-Gug;Park, Soo-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1431-1434
    • /
    • 2005
  • In the steel production line, the molten metal of a furnace is transformed into billet and then moves to the heating furnace of the hot rolling mill. This paper describes about the development of recognition system for the characters, which was marked at the billet material by use template-marking plate and hand written method, in the steel plant. For the recognition of template-marked characters, we propose PSVM algorithm. And for the recognition of hand written character, we propose combination methods of CCD algorithm and PSVM algorithm. The PSVM algorithm need some more time than the conventional KLT or SVM algorithm. The CCD algorithm makes shorter classification time than the PSVM algorithm and good for the classification of closed curve characters from Arabic numerals. For the confirmation of algorithm, we have compared our algorithm with conventional methods such as KLT classifier and one-to-one SVM. The recognition rate of experimented billet characters shows that the proposing PSVM algorithm is 97 % for the template-marked characters and combinational algorithm of CCD & PSVM is 95.5 % for the hand written characters. The experimental results show that our proposing method has higher recognition rate than that of the conventional methods for the template-marked characters and hand written characters. By using our algorithm, we have installed real time character recognition system at the billet processing line of the steel-iron plant.

  • PDF

Prediction of Roll Force in Hot Grooveless Rolling of Billet (열간 빌렛의 평롤 압연시 압연하중 예측)

  • Byon, S.M.;Park, H.S.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1379-1382
    • /
    • 2007
  • In this paper, we present a simplified analytic approach for the prediction of roll force to be applicable to the grooveless rolling. The approach is based on the deformation shape deduced from physical considerations and employs the assumption that the deformation homogeneously occurs in three directions. Strain and strain rate are calculated by the geometric relationships between those components and the prescribed deformation functions. Then, stress components are obtained from the Levy-Mises' flow rule. By integrating the stress components along the rolling direction, roll force are finally obtained. The prediction accuracy of the proposed model is examined through comparison with results obtained from the finite element analysis.

  • PDF

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

A Numerical Analysis of H Shape Rolling (H 형강압연의 수치해석)

  • Park, Jong-Jin;Jeong, Nak-Joon;Kim, Jae-Joo
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.375-389
    • /
    • 1995
  • In H shape rolling, accurate predictions of deformation and temperature distribution in a billet are quite important because they are the main factors in determining roll calibers and roll pass schedules. Many researches have been performed to achieve the predictions, but most of them are limited to single pass or isothermal assumptions. In the present investigation, it is attempted to develop a method to predict the deformation and temperature distributions which is applicable to a complete rolling process that usually consists of several rollings under different rolls for a period of time. The method works by coupling two analyses : one is an approximate analysis for temperature distribution prediction and the other is the slab-FEM hybrid analysis for deformation prediction. The method is applied to analyze a "H" shape rolling process consisting of nine passes under four different rolls. In the present paper, basic ideas of the method are presented. Also, shapes of cross sections, strain and temperature distributions, roll separating force and roll torque predicted by the method are discussed.

  • PDF

Process Design for Large-Scale Ring-Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 대형 링 압연공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.172-177
    • /
    • 2007
  • The process design for large-scale ring rolling of Ti-6Al-4V alloy was performed by calculation method, processing map approach and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was used to make geometry design such as initial billet and blank sizes, and final rolled ring shape. A commercial FEM code, SHAPE-RR was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling and the formation of over-heating above $\beta$-transus temperature due to deformation heating, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

Study of Material Properties of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연.제어냉각기술로 제조된 냉간성형용 비조질강의 소재특성)

  • Kim, N.G.;Park, S.D.;Kim, B.O.;An, J.Y.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.603-608
    • /
    • 2006
  • The main purpose of the present study has been placed on investigating the mechanical properties and microstructures of C-Si-Mn-V steels for cold forming manufactured by controlled rolling and cooling technology. The steels were manufactured in electric arc furnace (EAF) and casted to $160{\times}160mm$ billet. The billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of 16%, 27% of area reduction respectively without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that $80kg_{f}/mm^{2},\;90kg_{f}/mm^{2}$ grade high strength microalloyed steel for cold forming are developed by accelerated cooling and optimum cold drawing.

Development of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연${\cdot}$제어냉각기술을 이용한 고강도 냉간성형용 비조질강의 개발)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.321-324
    • /
    • 2005
  • The main purpose of the present study has been placed on investigating the effects of controlled rolling and cooling on the microstructures and mechanical properties of C-Si-Mn-V steels for cold forming. The steels were manufactured in vacuum induction melting(VIM) furnace and casted to 1.1ton Ingots and the ingots were forged to $\Box150$ billet. The forged billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of $27\%$ of area reduction without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that mechanical properties and microstructure of C-Si-Mn-V steels for cold forming were enhanced by accelerated cooling and founded optimum level of cold drawing.

  • PDF

Wrinkle Defect of Low Carbon Steel in Wire Rod Rolling (저탄소강 선재 압연의 주름성 결함)

  • Kim H. Y.;Kwon H. C.;Byon S. M.;Park H. D.;Im Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.307-316
    • /
    • 2004
  • This study examined the cause of the wrinkle defect which is frequently encountered in wire rod rolling of low carbon steel$(C0.08\~0.13wt.\%)$. Even a small defect on the surface of rolled bars can easily develop into fatal cracks during cold heading process of low carbon steel, and it is therefore necessary to minimize inherent defects on the surface of hot rolled bars. Hot rolling process of low carbon steel was analyzed to identify the cause of the wrinkle defect in conjunction with FE analysis. The integrated analysis revealed that the wrinkle defect initiated in the first stage of rolling, and it was at the billet edge where severe deformation and drastic temperature drop were present. To elucidate the micro-mechanical mechanism of the wrinkle defect, hot compression tests were carried out at various temperatures and strain rates using Gleeble-3800. The surface profile of the each other compressed specimens was compared, and rough surface lines were observed at relatively low temperatures. Those surface defects can develop into wrinkles during multi-pass rolling. To control the wrinkle defect in rolling, it is necessary to design an adequate caliber which can minimize the loss of ductility, and thereby prevent flow localization. To use the result of this study fur other steels, the quantitative measure of the wrinkle defect and flow localization parameter should be proposed.

  • PDF