• Title/Summary/Keyword: Bilinear

Search Result 682, Processing Time 0.025 seconds

Linking bilinear traction law parameters to cohesive zone length for laminated composites and bonded joints

  • Li, Gang;Li, Chun
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.177-196
    • /
    • 2014
  • A theoretical exploration for determining the characteristic length of the cohesive zone for a double cantilever beam (DCB) specimen under mode I loading was conducted. Two traction-separation laws were studied: (i) a law with only a linear elastic stage from zero to full traction strength; and (ii) a bilinear traction law illustrating a progressive softening stage. Two analytical solutions were derived for the first law, which fit well into two existing solution groups. A transcendental equation was derived for the bilinear traction law, and a graphical method was presented to identify the resultant cohesive zone length. The study using the bilinear traction law enabled the theoretical investigation of the individual effects of cohesive law parameters (i.e., strength, stiffness, and fracture energy) on the cohesive zone length. Correlations between the theoretical and finite element (FE) results were assessed. Effects of traction law parameters on the cohesive zone length were discussed.

Design of A Controller Using Successive Approximation for Weakly Coupled Bilinear Systems

  • Chang, Jae-Won;Kim, Young-Joong;Kim, Beom-Soo;Lim, Myo-Taeg
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.33-38
    • /
    • 2002
  • In this paper, the infinite time optimal regulation problem for weakly coupled bilinear systems with quadratic performance criteria is obtained by a sequence of algebraic Lyapunov equations. This is the new approach is based on the successive approximation. In particular, the order reduction is achieved by using suitable state transformation so that the original Lyapunov equations are decomposed into the reduced-order local Lyapunov equations. The proposed algorithms not only solve optimal control problems in the weakly coupled bilinear system but also reduce the computation time. This paper also includes an example to demonstrate the procedures.

  • PDF

Fuzzy Controller Design for Steam Temperature Control of Power Plant Superheater (화력발전소 과열기의 증기온도 제어를 위한 퍼지 제어기 설계)

  • 이돈구;이상혁;김주식;유정용
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.80-86
    • /
    • 2002
  • In this paper, we present a method of fuzzy controller design for the power plant superheater in the form of bilinear system. For the steam temperature control, the input variables are constructed by the area of difference between the profiles estimated from bilinear observer and reference profiles, and the time rate of change. We estimate the control rules by T. Takagi and M. Sugeno's fuzzy model. The feasibilities of the suggested method are illustrated via the computer simulation results.

Time and frequency domain identification of seismically isolated structures: advantages and limitations

  • Kampas, G.;Makris, N.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.249-270
    • /
    • 2012
  • This paper investigates the effectiveness of widely used identification methods to identify the response of seismically isolated structures supported on bearings with bilinear behavior. The paper shows that while both time domain and frequency domain methods predict with high accuracy the modal characteristics of structures isolated by linear isolation system, their performance degrades appreciably when the isolation system exhibits bilinear behavior even when its strength assumes moderate values (say 5% of the weight). The paper also shows that the natural period of isolated structure that results from bilinear isolation systems can be satisfactorily predicted with wavelet analysis.

Assessment of Fragility Curve for Earthquake in Railway Bridge (기존 철도교량의 지진에 대한 취약도 곡선 산정)

  • Kim, Dae-Ho;Sun, Chang-Ho;Kim, Ick-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.101-104
    • /
    • 2008
  • Recently, the serious damage by earthquakes is increased around the world. SOC fo city is established to minimize the loss of lives and assets by earthquakes, which an objective standard is required. Generally, bridges damage by earthquakes occurred the inelastic hinge under the column. Nonlinear element model of inelastic hinge have been used to Bilinear model, but Takeda model for material characterization of concrete is a little. In this study, railway bridge was performed seismic fragility analysis for Takeda model and Bilinear model comparatively. This analysis shows that damage probability of Takeda model is larger than Bilinear model. And analysis of Takeda model in longitudinal direction and transverse direction are different. Therefore developed analysis for concrete column of bridge is expected to apply to material characterization.

  • PDF

Dynamic Instability of Strength-Limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 동적 불안정)

  • Han, Sang-Whan;Kim, Jong-Bo;Bae, Mun-Su;Moon, Ki-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2008
  • This study investigates the dynamic instability of strength-limited bilinear single degree of freedom (SDF) systems under seismic excitation. The strength-limited bilinear hysteretic model best replicates the hysteretic behavior of the steel moment resisting frames. To estimate the dynamic instability of SDF systems, the collapse strength ratio is used, which is the yield-strength reduction factor when collapse occurs. Statistical studies are carried out to estimate median collapse strength ratios and those dispersions of strength-limited bilinear SDF systems with given natural periods, hardening stiffness ratios, post-capping stiffness ratios, ductility and damping ratios ranging from 2 to 20% subjected to 240 earthquake ground motions recorded on stiff soil sites. Equations to calculate median and standard deviation of collapse strength ratios in strength-limited bilinear SDF systems are obtained through nonlinear regression analysis. By using the proposed equations, this study estimated the probabilistic distribution of collapse strength ratios, and compared this with the exact values from which the accuracy of the proposed equations was verified.

A Design Method for a discrete-time $\textrm{H}^{\infty}$ Controller (이산시간 $\textrm{H}^{\infty}$제어기의 설계방법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1444-1447
    • /
    • 1997
  • In this paper, the problen of dseigning a H.inf. controller is considered, where the controller is realized through digital equipment. We show that the existing discrete-time controller design method can be improved by usign the inveres bilinear transformation. The usefulness of the given method is confirmed by simulation.

  • PDF

An adaption algorithm for parallel model reference bilinear systems

  • Yeo, Yeong-Koo;Song, Hyung-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.721-723
    • /
    • 1987
  • An Adaptation algorithm is presented and a convergence criterion is derived for parallel model reference adaptive bilinear systems. The output error converges asymptotically to zero, and the parameter estimates are bounded for stable reference models. The convergence criterion depends only upon the input sequence and a priori estimates of the maximum parameter values.

  • PDF

Hybrid sliding mode control for bilinear system with uncertainty

  • Jeon, Hae-Jin;Lee, Sung-Young;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.60.5-60
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Bilinear system model $\textbullet$ Design of sliding control and stability analysis $\textbullet$ Design of proposed controller $\textbullet$ Simulations $\textbullet$ Conclusions $\textbullet$ References

  • PDF