• Title/Summary/Keyword: Bile culture

Search Result 89, Processing Time 0.02 seconds

Physiological Characteristics and ACE Inhibitory Activity of Lactobacillus zeae RMK354 Isolated from Raw Milk (원유에서 분리한 Lactobacillus zeae RMK354의 생리적 특성 및 ACE 억제능)

  • Lim, Sang-Dong;Kim, Kee-Sung;Do, Jeong-Ryong
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.587-595
    • /
    • 2008
  • In order to develop a new starter for fermented milk, 1037 bacterial strains were isolated from raw milk. The strain that showed excellent acid producing and angiotensin converting enzyme (ACE) inhibitory activity (88.6%) was selected and identified as a Lactobacillus zeae based on the result of API carbohydrate fermentation pattern and 16S rDNA sequence. Lactobacillus zeae RMK354 was investigated further to study its physiological characteristics. It showed strong ACE inhibitory activity compared with commercial LAB starters tested. The optimum growth temperature of L. zeae RMK354 was $40^{\circ}C$ and it took 10 hr to reach pH 4.3 under this condition. L. zeae RMK354 showed more sensitive to penicillin-G, bacitracin, novobiocin, in a comparison of 14 different antibiotics, and showed most resistance to polymyxin B and vancomycin. It showed higher esterase and leucine arylamidase activities compared with 16 other enzymes. It was comparatively tolerant to bile juice and able to survive at pH 2 for 3 hr. It showed inhibitory activity against Salmonella Typhimurium with the rate of 60%. Based on these and previous results, L. zeae RMK354 could be an excellent starter culture for fermented milk with high level of ACE inhibitory activity.

Probiotic Properties of Lactic Acid Bacteria isolated from Feces and Kimchi (베트남인 분변 및 김치로부터 분리된 유산균의 프로바이오틱스 기능성 연구)

  • Shin, Hyun Su;Yoo, Sung Ho;Jang, Jin Ah;Won, Ji Young;Kim, Cheol Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.255-261
    • /
    • 2017
  • The purpose of this study was to investigate the probiotic properties and antioxidant capacity of lactic acid bacteria isolated from Vietnamese feces and the Korean traditional food kimchi. Six isolated strains were identified as Lactobacillus sp. by 16S rRNA sequencing. All strains showed good resistance to low pH (1.5, 2.0, and 3.0) and 0.3% oxgall bile acids. Culture filtrates from the six strains showed various antioxidant effects, including DPPH, ABTS, reducing power, and metal chelating ($Fe^{2+}$) activities. Two of the six Lactobacillus strains showed potential probiotic activity. Heat resistance and adhesion assays were conducted by mixing the selected strains, Lactobacillus acidophilus V4, Lactobacillus plantarum V7, and Lactobacillus paracasei DK121 isolated from kimchi. The results showed that the heat resistance of these strains was similar to that of a commercial strain, L. plantarum LP. In addition, a mucin attachment assay using the mixture of selected strains (V4, V7, and DK121) showed high binding activity to the mucous layer. In conclusion, a mixture of V4, V7, and DK121 shows promising probiotic activity and may be useful for the development of health-related products.

Optimization of Culture Condition for Enhancing the Probiotics Functions (프로바이오틱스의 기능성 향상을 위한 배양법)

  • Chang, Bo Yoon;Han, Ji Hye;Cha, Bum-Suk;Ann, Sung-Ho;Kim, Sung Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.295-301
    • /
    • 2015
  • The functions of probiotics, particularly Lactic acid bacteria, have been studied in a range of human diseases, including cancer, infectious diseases, gastrointestinal disorders, and allergies. Among the many benefits associated with the consumption of probiotics, modulation of immune activity has received the most attention. This study aimed at investigating the improved immune stimulatory and stability of L. plantarum when cultivated on modified basal media supplemented with the Undaria pinnatifida co-cultured with L. plantarum. An in vitro test showed that U. pinnatifida media cultured L. plantarum is strong enough to survive in the gastric juice (gastric and bile acid). Mouse macrophage-derived cell lines RAW 264.7 was used to measured immune stimulating activity of L. plantarum. When U. pinnatifida media cultured by L. plantarum was NO and $TNF-{\alpha}$ production is significantly increased compared to basal media cultured L. plantarum. These results show that U. pinnatifida could be applied for a component for cultivation of L. plantarum. This optimized U. pinnatifida medium can be used the improving of stability and immune function on production of probiotics.

Physiological Characteristics and Tyrosinase Inhibitory Activity of Lactobacillus plantarum M23 Isolated from Raw Milk (원유에서 분리한 Lactobacillus plantarum M23의 Tyrosinase 활성 저해 및 생리적 특성조사)

  • Heo, In-Sook;Kim, Kee-Sung;Yang, Seung-Yong;Lee, Nam-Hyouck;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.501-508
    • /
    • 2007
  • In order to develop a new starter for fermented milk, Lactobacillus plantarum M23 was isolated from raw milk and investigated for physiological characteristics. It showed good tyrosinase inhibitory activity compared with commercial lactic acid bacteria. The optimum growth temperature of Lactobacillus plantarum M23 was $40^{\circ}C$ and cultures took 17 hr to reach pH 4.3. Lactobacillus plantarum M23 showed more sensitivity to Penicillin-G, Oxacillin, Novobiocin, Chloramphenicol in a comparison of 12 different antibiotics, and showed most resistance to Vancomycin. It showed higher leucine arylamidase and ${\beta}-galactosidase$ activities compared to 16 other enzymes. It was comparatively tolerant to bile juice and able to survive at pH 2 for 3 hours. It showed high resistance to Escherichia coli, Salmonella typhimurium and Staphylococcus aureus with rates of 77.8%, 86.5% and 83.8%, respectively. Based on these and previous results, Lactobacillus plantarum M23 could be an excellent starter culture for fermented milk with high resistance to melanin.

Studies on the Ginseng Tea using Spore-forming Lactic Acid Bacteria (유포자성 유산균을 이용한 인삼차 개발에 관한 연구)

  • Kim, Young-Man;Han, Young-Hee;Paek, Nam-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.661-665
    • /
    • 2002
  • In order to develop ginseng tea powder with spore forming lactic acid bacteria Lactobacillus sporogenes was used. In the jar fermentor experiment under optimal culture conditions, the number of spore of L. sporogenes reached about $20{\times}10^8\;CFU/mL$ and sporulation rate was 97%. Granulated ginseng tea was made from glucose 7 kg, lactose 2 kg, ginseng extract 1 kg and spores 5 g $(5200{\times}10^8\;CFU/g)$. In the treatment of artificial gastric juice (pH 3.0) for 4 h and artificial bile for 8 h, the survival rate of spores in the granulated ginseng tea was 55.4% and 90.0% respectively. The spores survived 77.6% after incubation for 20 min in boiled water. Its storage stability was about 75% for 12 months at room temperature.

Effectiveness Analysis on the Application of Ultraviolet and Plasma Treatment Devices for Water Sterilization (용수 살균을 위한 자외선과 플라즈마 처리장치 적용에 따른 효과분석)

  • Kim, Young Jae;Park, Jeon Oh;Lee, Haeng Lim
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.86-90
    • /
    • 2019
  • This study aimed to compare the disinfection efficiencies of the ultraviolet and plasma systems, the two systems designed and commercialized to disinfect water in aquaculture, by putting each in a 100 ℓ water tank and concentrating 1.0 ℓ of treated water to check the changes in the number of bacteria in the samples. Each system was operated for 6 hours to culture the typical seawater bacteria in the Marine agar, Thiosulfate citrate bile salts sucrose agar and Salmonella Shigella agar media, respectively, to check the number of bacteria in the media, and the changes in the number of Edwardsiella piscicida in the treated water were checked after the artificial inoculation of E. piscicida in the disinfected seawater. As a result, the two disinfection systems showed the almost similar levels of bacterial reduction efficiency between 99.5% and 99.9%. However, the result of this study showed that, with 100 ℓ of water treated for the same length of time using the two systems, the plasma system turned out to disinfect bacteria in a shorter period of time than the UV system. However, as the changes in the number of bacteria were checked for a short length of time (6 hours) in this study, it was judged that, considering the actual aquaculture environment in which the quality of water significantly changes with feed residues, excretions and coastal contamination, etc., and a lot of biofilms and organic matter exist, the plasma system would be more efficient than the UV system as the former is capable of continuously maintaining a certain level of efficiency than the latter that is limited in terms of efficiency depending on the level of turbidity and the existence of organic matter.

Potential use of Bacillus amyloliquefaciens as a probiotic bacterium in abalone culture (북방전복, Haliotis discus hannai 에 대한 Bacillus amyloliquefaciens의 probiotic 효과)

  • Park, Jin Yeong;Kim, Wi-Sik;Kim, Heung Yun;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • In comparison to the numbers of such studies of fish, few studies have been carried out on the immunity, physiology and ecology of abalone, while studies on abalone disease are also extremely rare. Moreover, mass mortality of cultured abalone due to pathogenic bacteria has not been reported in the southern coast of Korea. However, Vibrio-like bacteria have been isolated from dead abalone, which indicates that a review is required in order to determine the cause of abalone mortality. Use of an antimicrobial agent to minimize the damage caused by disease in abalone farms is common, but the therapeutic effects are insignificant. Demand for probiotics has increased, but research on the development of probiotics for use in abalone culture is very rare. Therefore, the present study isolated KC16-2 from fermented kimchi soup and investigated the characteristics of the isolate as a candidate probiotic bacterium in abalone. KC16-2 was identified as Bacillus amyloliquefaciens (B. amyloliquefaciens KC16-2) based on its biochemical properties and 16S rRNA gene sequence. B. amyloliquefaciens KC16-2 showed inhibitory effects against the growth of various vibrios in vitro, and kept the numbers constant until four days after inoculation in marine water at a temperature of $15{\sim}25^{\circ}C$, indicating the possible use of KC16-2 as a probiotic, except in the winter. The growth of KC16-2 was inhibited by bile salt, but the numbers increased over time suggesting the bacteria were still alive in the abalone's digestive tract. Abalone fed with a diet including KC16-2 for 12 weeks showed good growth, but showed no significant differences from the control group. However, the mortality of the abalone supplied the probiotic diet was reduced to half that of the control group in a challenge test with Vibrio tubiashii. Therefore, we suggest that B. amyloliquefaciens KC16-2 could be used as a probiotic bacterium for control of the mortality of abalone caused by opportunistic pathogenic vibrios.

Biological Characters of Bacillus pumilus CPB-St Inhibiting the Growth of Fish Pathogenic Streptococci (어류병원성 연쇄구균의 생장을 억제하는 Bacillus pumilus CPB-St의 생물학적 특성)

  • Lee, Minyeong;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.28 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • The biological characteristics of Bacillus sp.CPB-St as a probiotic strain to control fish streptococcosis was determined. Based on 16S rRNA sequencing, Bacillus sp.CPB-St was identified as Bacillus pumilus and named B. pumilus CPB-St (Abbreviated as CPB-St). Growth inhibitory activity of CPB-St against Streptococcus spp. was examined at three different incubation temperatures ($20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$) and three culture media (NA, TSA, and BHIA) based on the diameter of inhibition zone. Its activity (inhibition zone of 11~29 mm) at $20^{\circ}C$ was higher than that (12~21 mm) at $30^{\circ}C$. Its activity (29 mm) in NA media was the same as that (29 mm) in TSA media. However, it was higher than that (22 mm) in BHIA media. The inhibitory activity of CPB-St against Streptococcus spp. was high at pH7. However, its activity was the same at salinity of 0.5% to 3%. CPB-St showed maximum growth after incubation at $25^{\circ}C$ for 48 h. To use CPB-St as probiotics, settlement studies in fish intestine and its efficacy through feeding are needed. CPB-St was highly resistant to gastric juice at pH4 and flounder's bile salt as well as deoxycholic acid at $300{\mu}g/ml$. CPB-St showed optimal viability in 1% NaCl. It showed similar growth in 0% to 7% NaCl. CPB-St could tolerate $-20^{\circ}C$ and $-70^{\circ}C$ for 45 min. There was no difference in the growth of the strain between room temperature and $4^{\circ}C$. Fish diet supplemented with CPB-St could be stored at low temperature without cell loss. Therefore, CPB-St might be used as probiotics to control streptococcosis of fish.

Fermentative characteristics of yogurt using lactic acid bacteria isolated from Korean traditional fermented food (전통 발효 식품에서 분리한 유산균을 이용한 yogurt 발효특성)

  • Park, Na-Young;Lee, Shin-Ho
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.707-713
    • /
    • 2017
  • The objective of this study was to select yogurt starter from Korean traditional fermented foods. The 2 strains (KM24, KM32) among 50 strains of isolated lactic acid bacteria selected as starter based on milk clotting ability, antimicrobial activity against various pathogens, tolerance in artificial gastric and bile juice and growth in 10 % skimmed milk. The strains were identified as Lacobacillus plantarum (KM32) and Pediococcus pentosacesus (KM24) by 16S rRNA gene sequencing. Viable cell number of yogurt fermented with mixed strains (KM24 and KM32) was 9.66 log CFU/mL after fermentation for 48 h and maintained $10^9CFU/mL$ during fermentation for 72 h at $37^{\circ}C$. The pH and titratable acidity of mixed cultured yogurt were 4.25% and 0.83% after fermentation for 48 h at $37^{\circ}C$, respectively. The physico-chemical characteristics of mixed cultured yogurt after fermentation for 48 h were $38.45{\mu}g/mL$ (polyphenol content), 48.57% (DPPH radical scavenging activity) and 465.40 cp (viscosity), respectively. The mixed cultured yogurt maintained $10^9CFU/mL$ of lactic acid bacteria during storage 10 days at $4^{\circ}C$. The viable cell number of yogurt prepared with mixed culture(KM32+KM24) maintained higher and than that of control (L. casei) during storage. These results indicated the potential use of selected strains (KM32+KM24) isolated from kimchi as a yogurt starter with strong acid tolerance and probiotics properties.