• Title/Summary/Keyword: Bile acid.

Search Result 593, Processing Time 0.02 seconds

Screening of Cholesterol-lowering Bifidobacterium from Guizhou Xiang Pigs, and Evaluation of Its Tolerance to Oxygen, Acid, and Bile

  • Zhang, Rujiao;He, Laping;Zhang, Ling;Li, Cuiqin;Zhu, Qiujin
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.37-43
    • /
    • 2016
  • Cardiovascular and cerebrovascular diseases seriously harm human health, and Bifidobacterium is the most beneficial probiotic in the gastrointestinal tract of humans. This work aimed to screen cholesterol-lowering Bifidobacterium from Guizhou Xiang Pig and evaluate its tolerance to oxygen, acid, and bile. Twenty-seven aerotolerant strains with similar colony to Bifidobacterium were isolated through incubation at 37℃ in 20% (v/v) CO2-80% (v/v) atmospheric air by using Mupirocin lithium modified MRS agar medium, modified PTYG with added CaCO3, and modified PTYG supplemented with X-gal. Ten strains with cholesterol-lowering rates above 20% (w/w) were used for further screening. The selected strains’ tolerance to acid and bile was then determined. A combination of colony and cell morphology, physiological, and biochemical experiments, as well as 16S rRNA gene-sequence analysis, was performed. Results suggested that BZ25 with excellent characteristics of high cholesterol-removal rate of 36.32% (w/w), as well as tolerance to acid and bile, was identified as Bifidobacterium animalis subsp. lactis. To further evaluate Bifidobacterium BZ25’s growth characteristic and tolerance to oxygen, culture experiments were performed in liquid medium and an agar plate. Findings suggested that BZ25 grew well both in environmental 20% (v/v) CO2-80% (v/v) atmospheric air and in 100% atmospheric air because BZ25 reached an absorbance of 1.185 at 600 nm in 100% atmospheric air. Moreover, BZ25 was aerotolerant and can grow in an agar medium under the environmental condition of 100% atmospheric air. This study can lay a preliminary foundation for the potential industrial applications of BZ25.

Fructooligosaccharides Alter Profiles of Fecal Short-Chain Fatty Acids and Bile Acids in Rats

  • Sung, Hye-Young;Choi, Young-Sun;Cho, Sung-Hee;Yun, Jong-Won
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.51-56
    • /
    • 2006
  • We investigated the effects of fructooligosaccharides and chicory inulin on the profiles of cecal and fecal short-chain fatty acids (SCFAs) and fecal bile acids in rats. Thirty-six Sprague Dawley male rats weighing about 190 g were randomly divided among four treatments; control diet, control diet +6%(w/w) fructooligosaccharide (POS), control diet +6% chicory inulin oligosaccharide(CIOS), and control diet +6% chicory inulin(CI). The rats were pair-fed and experimental diets were maintained for 5 weeks. Cecal and fecal pH was significantly decreased in rats that were fed fructooligosaccharides and chicory inulin. Cecal propionate was significantly elevated in rats fed CIOS diets, and butyrate was lower in rats fed FOS and CI than control values. Cecal lactate was significantly higher in the FOS group than in the control group. The fecal excretions of acetate and total SCFA were 200-300% higher in rats that were fed fructooligosaccharides and chicory inulin than in the control group. Lactate excretion was highest in rats that were fed FOS, followed by those fed CIOS and CI. The cholic acid and total bile acid concentrations in feces were significantly lower in the rats that were fed fructooligosaccharides and chicory inulin. The deoxycholic acid concentrations in wet feces were significantly lower in the groups of rats that ate CIOS (0.186 mM), FOS (0.274 mM), and CI (0.362 mM) than in the control group (0.595 mM). Among the fructans, short-chain fructooligosaccharide was more effective at decreasing colonic pH and lactate production, but medium-chain chicory inulin oligosaccharide was more effective at increasing fecal butyrate and lowering the fecal secondary bile acid concentration.

In Vitro and In Vivo Physiological Characteristics of Dietary Fiber from By-product of Aloe vera Gel Processing (알로에 베라 유래 식이섬유의 In Vitro 및 In Vivo 생리기능 특성)

  • Baek, Jin-Hong;Cha, Tae-Yang;Heo, Jin-Chul;Lee, Sang-Han;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.173-182
    • /
    • 2010
  • A fiber fraction (Aloe cellulose), the by-product obtained from Aloe vera gel processing was freeze dried and investigated for in vitro glucose/ bile acid retarding effects of powdered sample (100 mesh) comparing with commercial $\alpha$-cellulose as a reference sample. We also examined the effectiveness of physiological functionality such as the antiobesity and anti-constipation on Sprague-Dawley (SD) rat. The Aloe cellulose powders during in vitro dialysis experiment for 2 hours exhibited the glucose and bile acid retarding index of 20.32-35.2% and 53.13-28.30%, respectively. Especially, freeze dried aloe cellulose showed the 2.5 and 1.2-6 times higher effect on in vitro glucose and bile acid retardation than those of $\alpha$-cellulose. These relatively good retarding effects on glucose and bile acid diffusion suggest a potential of preventing from diabetes and arteriosclerosis of some extent. Also, the results from animal experiments on SD rats fed a high-fat diet for 4 weeks suggested that Aloe cellulose might be used as a novel dietary fiber showing an effective anti-obesity and anti-constipation effect.

Isolation and Characterization of Lactic Acid Bacteria from Kimchi, Korean Traditional Fermented Food to Apply into Fermented Dairy Products

  • Cho, Young-Hee;Hong, Sung-Moon;Kim, Cheol-Hyun
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.75-82
    • /
    • 2013
  • This study aimed to isolate lactic acid bacteria (LAB) from Kimchi and to identify suitable probiotic strain for application in fermented dairy product as a commercial starter culture. A total of 106 (LAB) strains were isolated from Kimchi collected from different regions in Korea and their phenotypic characteristics were assayed. Four isolates from MRS agar plates were selected and designated as DKL109, DKL119, DKL121 and DKL128. They were identified first by API 50 CHL kit and then 16S rRNA gene sequencing. DKL121 and DKL128 were identified as Lactobacillus paracasei and Lactobacillus casei, respectively. Other two isolates (DKL109 and DKL119) were identified as Lactobacillus plantarum. To estimate their applicability in dairy products, the characteristics including acid and bile tolerance, cold shock induced cryotolerance and enzymatic activities were determined. There was wide variation in ability of strains to acid tolerance, but no significant differences in bile tolerance, cold shock induced cryotolerance within selected strains. DKL119 and DKL121 showed the highest resistance to acid and bile and the highest ${\beta}$-galactosidase activity, respectively. When these two strains were used for yogurt preparation as a single starter culture, their viable cell counts reached to $1.0{\times}10^9CFU/mL$. Lactobacillus plantarum DKL119 showed faster acid development than commercial starter culture. Also storage trials at $10^{\circ}C$ showed that the viability of these strains was retained over 15 d. With these results, it was indicated that probiotics isolated from Kimchi can be used in yogurt manufacturing as a starter culture.

Development of Bile Salt-Resistant Leuconostoc citreum by Expression of Bile Salt Hydrolase Gene

  • Cho, Seung Kee;Lee, Soo Jin;Shin, So-Yeon;Moon, Jin Seok;Li, Ling;Joo, Wooha;Kang, Dae-Kyung;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2100-2105
    • /
    • 2015
  • Probiotic bacteria must have not only tolerance against bile salt but also no genes for antibiotic resistance. Leuconostoc citreum is a dominant lactic acid bacterium in various fermented foods, but it is not regarded as a probiotic because it lacks bile salt resistance. Therefore, we aimed to construct a bile salt-resistant L. citreum strain by transforming it with a bile salt hydrolase gene (bsh). We obtained the 1,001 bp bsh gene from the chromosomal DNA of Lactobacillus plantarum and subcloned it into the pCB4170 vector under a constitutive P710 promoter. The resulting vector, pCB4170BSH was transformed into L. citreum CB2567 by electroporation, and bile salt-resistant transformants were selected. Upon incubation with glycodeoxycholic acid sodium salt (GDCA), the L. citreum transformants grew and formed colonies, successfully transcribed the bsh gene, and expressed the BSH enzyme. The recombinant strain grew in up to 0.3% (w/v) GDCA, conditions unsuitable for the host strain. In in vitro digestion conditions of 10 mM bile salt, the transformant was over 67.6% viable, whereas only 0.8% of the host strain survived.

Biosynthesis of Bile Acids in a Variety of Marine Bacterial Taxa

  • Kim, Doc-Kyu;Lee, Jong-Suk;Kim, Ji-Young;Kang, So-Jung;Yoon, Jung-Hoon;Kim, Won-Gon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.403-407
    • /
    • 2007
  • Several marine. bacterial strains, which were isolated from seawater off the island Dokdo, Korea, were screened to find new bioactive compounds such as antibiotics. Among them, Donghaeana dokdonensis strain DSW-6 was found to produce antibacterial agents, and the agents were then purified and analyzed by LC-MS/MS and 1D- and 2D-NMR spectrometries. The bioactive compounds were successfully identified as cholic acid and glycine-conjugated glycocholic acid, the $7{\alpha}$-dehydroxylated derivatives (deoxycholic acid and glycodeoxycholic acid) of which were also detected in relatively small amounts. Other marine isolates, taxonomically different from DSW-6, were also able to produce the compounds in a quite different production ratio from DSW-6. As far as we are aware of, these bile acids are produced by specific members of the genus Streptomyces and Myroides, and thought to be general secondary metabolites produced by a variety of bacterial taxa that are widely distributed in the sea.

Antibacterial Activity and Probiotic Properties of Lactic Acid Bacteria from Korean Intestine Origin (한국인 장관에서 분리한 유산균의 항균활성 및 프로바이오틱스 특성 연구)

  • Kang, Chang-Ho;Kim, Yong Gyeong;Han, Seul Hwa;Jeong, Yulah;Paek, Nam-Soo
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.153-159
    • /
    • 2017
  • The purpose of this study was to investigate the probiotic properties of lactic acid bacterial strains isolated from human feces. The properties were tested on the basis of guideline for probiotic selection protocol such as tolerance for acid or bile salt, autoaggregation, antibiotic resistance, and antimicrobial activity. Total 25 lactic acid bacteria were isolated from human feces, and their antibacterial activity was tested against Staphylococcus aureus, Escherichia coli, E. coli O157:H7, Vibrio parahaemolyticus, V. alginolyticus using an agar diffusion assay. Among them, 4 selected strains were identified by analysis of their 16S rRNA, as Lactobacillus rhamnosus MG316, L. acidophilus MG501, L. reuteri MG505, and L. gasseri MG570. Results show that resistance to low pH and bile salts. Also, the selected strains were resistant to bile acid up to 3% and their autoaggregation rates were as high as 60%. All strains tested were resistance to nalidixic acid and kanamycin.

Effects of Bupleuri Radix on Rat Hepatic MAO by Common Bile Duct Ligation and Taurocholate Load after Common Bile Duct Ligation (시호(柴胡)가 총담관결찰 및 taurocholate 부하(負荷) 흰쥐 간의 MAO 활성에 미치는 영향)

  • Kim, Seong-Mo;Wang, Wu-Hao;Park, Jae-Hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.275-281
    • /
    • 2000
  • Object : This study was carried out to examine the effect of Bupleuri Radix on experimental cholestasis, and make clear apart of this mechanism. Methods : Two models of common bile duct ligation group and taurocholate load group after common bile duct ligation were induced, and Bupleuri Radix extract was taken orally for 14 days. In the 1, 2, 4, 7 and 14 days after treatment, the mitochondrial and microsomal monoamine oxidase(MAO) A and B activities in liver were measured. Results : The mitochondrial MAO A and B activities increased in both Blupleuri Radix treated group after common bile duct ligation and Blupleuri Radix treated group after taurocholate load and common bile duct ligation. MAO A increased in Blupleuri Radix treated group after taurocholate load and common bile duct ligation, and MAO B increased in Blupleuri Radix treated group after common bile duct ligation. The microsomal MAO A activities increased in both Blupleuri Radix treated group after common bile duct ligation and Blupleuri Radix treated group after taurocholate load and common bile duct ligation. Conclusion : According to the result, it is consider that Blupleuri Radix not only improves cholestatis in liver, but also decreases a genetic synthesis of taurocholic acid.

  • PDF

Biochemical and Molecular Insights into Bile Salt Hydrolase in the Gastrointestinal Microflora - A Review -

  • Kim, Geun-Bae;Lee, Byong H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1505-1512
    • /
    • 2005
  • Bile salt deconjugation is the most biologically significant reaction among the bacterial alterations of bile acids in the gastrointestinal tract of human and animal. The responsible enzyme, bile salt hydrolase (BSH), catalyzes the hydrolysis of glycineand/or taurine-conjugated bile salts into amino acid residues and deconjugated bile acids. Herein we review current knowledge on the distribution of BSH activity among various microorganisms with respect to their biochemical and molecular characteristics. The proposed physiological impact of BSH activity on the host animal as well as on the BSH-producing bacterial cells is discussed. BSH activity of the probiotic strains is examined on the basis of BSH hypothesis, which was proposed to explain cholesterol-lowering effects of probiotics. Finally, the potential applications of BSH research are briefly discussed.

Characterization of Selected Lactobacillus Strains for Use as Probiotics

  • Song, Minyu;Yun, Bohyun;Moon, Jae-Hak;Park, Dong-June;Lim, Kwangsei;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.551-556
    • /
    • 2015
  • The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products.