• Title/Summary/Keyword: Bile

Search Result 1,354, Processing Time 0.032 seconds

Mochrus (Bombax ceiba Linn.): A Comprehensive Review on Pharmacology Phytochemistry, and Ethnomedicinal Uses

  • Fatima, Suhail;Siddiqui, Aisha;Khan, Afshan
    • CELLMED
    • /
    • v.9 no.4
    • /
    • pp.4.1-4.5
    • /
    • 2019
  • The medicinal plants are extensively used for curing variegated malady in day to day life. There is an emergent demand for plant based medicines, food supplements, health products, pharmaceuticals etc. Mochrus (Bombax ceiba Linn.) is one of the valuable medicinal plants used in Unani system of medicine since relic belongs to family Bombacaceae. It is a tall tree and widely distributed through India, Africa, Australia and tropical Asia. Many parts of the plant (root, stem bark, gum, leaf, prickles, flower, fruit, seed and heartwood) are used for the treatment of a variety of ailments. It is reported to possess nafe sailanur reham (beneficial in leucorrhea), mujaffif (siccative), muqawwi reham (uterine tonic), qabiz (constipative), muallide mani (production of semen), mumsik wa mughalliz mani (increase consistency of semen), dafe fasaad khoon wa safra (purifies blood and bile) etc. It is used in asthma, diarrhoea, wound, leprosy, boils and many other skin diseases. Also possess some important pharmacological activities such as antioxidant, analgesic, antipyretic, antibacterial, diuretic, hepatoprotective, anticancer, hypoglycaemic and hypotensive etc. It is reported to contain phytoconstituents like polysaccharides, naphthoquinones, anthocyanins, lupeol and naphthol etc. This paper provides a compendium review on pharmacological, phytochemical properties and therapeutic benefits of the plant.

Effect of Uranyl Nitrate-Induced Acute Renal Failure on the Pharmacokinetics of Sulfobromophthalein in Rats

  • Park, Gun-Hwa;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.233-239
    • /
    • 1990
  • The efect of acute renal failure (ARF) on the pharmacokinetics o sulfobromophthalein (BSP) was investigated in order to elucidate if renal failure modifies the hepatic metabolism of drugs. ARF was induced by intravenous (iv) injection of uranyl nitrate (UN) to rats (5 mg/kg) five days before the experiment. Area under the plasma concentration-time curve (AUC)of BSP after portal vein (pv) injection increased by 2-fold and total body clearance ($CL_1$) decreased one half (p <0.01) in UN-induced ARF (UN-ARF) rate compared to the control rats. But the plasma disappearance of BSP after iv injection did not differ significantly between control and UN-ARF rats. Since BSP is excreted via the liver, $CL_1$ represented the approximate hepatic clearance of BSP. Therefore, the decrease in $CL_1$ represented the approximate hepatic clearance of BSP. Therefore, the decrease in $CL_1$ represents a decrease in hepatic intrinsic clearance ($CL_{int}$) for BSP since plasma free fraction ($f_p$) of BSP was not affected by UN-ARF. The content of hepatic cytoplasmic Y-protein, which catalyzes BSP-glutathione conjugation and limits the trasfer of BSP from blood to bile, increased significantly (p < 0.01), however its binding activity (BA) for BSP was decreased significantly (p <0.01) by UN-ARF. The decrease in $CL_{int}$might have some correlation with the changed characteristics of hepatic Y-protein, specifically its decreased BA for BSP.

  • PDF

Preparation and Evaluation of Solid lipid Microspheres Containing Cyclosporine A (사이클로스포린을 함유한 고형 지질미립구의 제조와 평가)

  • 양수근;박준상;최영욱
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.487-494
    • /
    • 1995
  • Solid lipid microspheres (SLMs) were prepared using various lipids and solidifying agents, in order to enhance the gastrointestinal absorption of Cyclosporine A (Cs A) which is a practically water-insoluble drug with low systemic bioavailability. Egg lecithin and HCO-60 (polyoxyethylated 60 mol, hydrogenated castor oil) were used as lipids. Stearic acid and stearyl alcohol were used as solidifying agents. Emulsion concentrates containing Cs A were prepared by mixing the melted lipid and solidifying agent with water, employing bile salts as a cosurfactant. SLMs were obtained by dispersing the warm emulsion concentrate in cold distilled water under mechanical stirring, followed by freeze drying. Physical characteristics of each SLM were investigated by particle size analysis, optical microscopy and scanning electron microscopy. Mean particle size of SLMs was in the range of 30 to 40.mu.m. The SLMs were in good appearance with spherical shape before freeze drying, but were deformed partially after freeze drying. Drug loading efficiencies of SLMs were observed as high as 80 to 90% in average. The systemic bioavailability of Cs A from different SLM formula was investigated in rats following oral administration. Cs A in whole blood was extracted and assayed by HPLC. SLMs revealed the higher bioavailabilities than the standard formula based on the marketed product. SLMs might have several advantages over standard formula for enhanced gastrointestinal absorption, controlled release properties, high loading capacity of the water-insoluble drug, and feasibility of solid dosage forms with better stability in storage.

  • PDF

The Roles of Kupffer Cells in Hepatic Dysfunction Induced by Ischemia/Reperfusion in Rats

  • Jung Joo-Yeon;Lee Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1386-1391
    • /
    • 2005
  • This study examined the role of Kupffer cells in altering the hepatic secretory and microsomal function during ischemia and reperfusion (ls/Rp). Rats were subjected to 60 min of hepatic ischemia, followed by 1 and 5 h of reperfusion. Gadolinium chloride ($GdCl_{3}$, 7.5 mg/kg body weight, intravenously) was used to inactivate the Kupffer cells 1 day prior to ischemia. Is/Rp markedly increased the serum aminotransferase level and the extent of lipid peroxidation. $GdCl_{3}$ significantly attenuated these increases. Is/Rp markedly decreased the bile. flow and cholate output, and $GdCl_{3}$ restored their secretion. The cytochrome P450 content was decreased by Is/Rp. However, these decreases were not prevented by $GdCl_{3}$. The aminopyrine N-demethylase activity was decreased by Is/Rp, while the aniline p-hydroxylase activity was increased. $GdCl_{3}$ prevented the increase in the aniline p-hydroxylase activity. Overall, Is/Rp diminishes the hepatic secretory and microsomal drug-metabolizing functions, and Kupffer cells are involved in this hepatobiliary dysfunction.

Treatment Using the SpyGlass Digital System in a Patient with Hepatolithiasis after a Whipple Procedure

  • Harima, Hirofumi;Hamabe, Kouichi;Hisano, Fusako;Matsuzaki, Yuko;Itoh, Tadahiko;Sanuki, Kazutoshi;Sakaida, Isao
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.596-599
    • /
    • 2018
  • An 89-year-old man was referred to our hospital for treatment of hepatolithiasis causing recurrent cholangitis. He had undergone a prior Whipple procedure. Computed tomography demonstrated left-sided hepatolithiasis. First, we conducted peroral direct cholangioscopy (PDCS) using an ultraslim endoscope. Although PDCS was successfully conducted, it was unsuccessful in removing all the stones. The stones located in the B2 segment were difficult to remove because the endoscope could not be inserted deeply into this segment due to the small size of the intrahepatic bile duct. Next, we substituted the endoscope with an upper gastrointestinal endoscope. After positioning the endoscope, the SpyGlass digital system (SPY-DS) was successfully inserted deep into the B2 segment. Upon visualizing the residual stones, we conducted SPY-DS-guided electrohydraulic lithotripsy. The stones were disintegrated and completely removed. In cases of PDCS failure, a treatment strategy using the SPY-DS can be considered for patients with hepatolithiasis after a Whipple procedure.

Evaluation of Microencapsulated Local Isolates Lactobacillus casei 97/L3 and Lactobacillus delbrueckii 94/L4 for Improved Probiotic and Yogurt Starter Culture Application

  • Juvi, Denny;Sthefanie, Sthefanie;Sugata, Marcelia;Lucy, Jap;Andrian, Danish;Rizkinata, Denny;Michelle, Michelle;Jan, Tan Tjie
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.211-219
    • /
    • 2019
  • The effect of microencapsulation on previously isolated Lactobacillus delbrueckii 94/L4 as starter culture for yogurt, and Lactobacillus casei 97/L3 as a probiotic candidate was investigated. Preliminary results showed that L. delbrueckii 94/L4 exhibited tolerance to bile, unlike L. casei 97/L3. Freeze drying significantly (p < 0.05) reduced the viability of both isolates by log 0.71-2.70. Although microencapsulation preserved the viability of L. casei 97/L3 cells exposed to simulated gastrointestinal tract conditions for 120 min, it did not impart significant (p < 0.05) protection against loss of viability during the first 30 min of exposure. Conversely, microencapsulated L. delbrueckii 94/L4 with the addition of Streptococcus thermophilus 24/S1 as starter culture was successfully incorporated into milk to form yogurt, yielding a significantly (p < 0.05) improved product quality.

Genome Profiling for Health Promoting and Disease Preventing Traits Unraveled Probiotic Potential of Bacillus clausii B106

  • Kapse, N.G.;Engineer, A.S.;Gowdaman, V.;Wagh, S.;Dhakephalkar, P.K.
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.334-345
    • /
    • 2018
  • Spore-forming Bacillus species are commercially available probiotic formulations for application in humans. They have health benefits and help prevent disease in hosts by combating entero-pathogens and ameliorating antibiotic-associated diarrhea. However, the molecular and cellular mechanisms of these benefits remain unclear. Here, we report the draft genome of a potential probiotic strain of Bacillus clausii B106. We mapped and compared the probiotic profile of B106 with other reference genomes. The draft genome analysis of B106 revealed the presence of ADI pathway genes, indicating its ability to tolerate acidic pH and bile salts. Genes encoding fibronectin binding proteins, enolase, as well as a gene cluster involved in the biosynthesis of exopolysaccharides underscored the potential of B106 to adhere to the intestinal epithelium and colonize the human gut. Genes encoding bacteriocins were also detected, indicating the antimicrobial ability of this isolate. The presence of genes encoding vitamins, including Riboflavin, Folate, and Biotin, also indicated the health-promoting ability of B106. Resistance of B106 to multiple antibiotics was evident from the presence of genes encoding resistance to chloramphenicol, ${\beta}$-lactams, Vancomycin, Tetracycline, fluoroquinolones, and aminoglycosides. The findings indicate the significance of B. clausii B106 administration during antibiotic treatment and its potential value as a probiotic strain to replenish the health-promoting and disease-preventing gut flora following antibiotic treatment.

The Effect of Milk Protein on the Biological and Rheological Properties of Probiotic Capsules

  • Kil, Bum Ju;Yoon, Sung Jin;Yun, Cheol-Heui;Huh, Chul-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1870-1875
    • /
    • 2020
  • Probiotics are often infused into functional foods or encapsulated in a supplement form to maintain a healthy balance between the gut microbiota and their host. Because there are milk-based functional foods such as yogurt and cheese on the market, it has been suggested that milk-based probiotics could be incorporated into skim milk proteins in a liquid capsule. Skim milk is mainly composed of casein and whey protein, which create a strong natural barrier and can be used to encapsulate probiotics. In this study, we compared the encapsulated probiotics prepared with milk-based concentrated cell mixtures using commercial probiotics. Probiotic capsules were emulsified with skim milk proteins using vegetable oil to form a double coating layer. The product was heat-stable when tested using a rheometer. The survival rate of the milk-based probiotic cells in the lower gastric environment with bile was significantly higher than commercial probiotics. Thus, milk-encapsulated probiotics exhibited greater efficacy in the host than other types of probiotics, suggesting that the former could be more viable with a longer shelf life under harsh conditions than other form of probiotics. Our findings suggested that, compared with other types of probiotics, milk-based probiotics may be a better choice for producers and consumers.

Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content

  • Berger, Jean-Mathieu;Moon, Young-Ah
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.116-125
    • /
    • 2021
  • Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.

Physiological Characteristics and Anti-Obesity Effect of Milk Fermented by Lactobacillus plantarum KI134 (Lactobacillus plantarum KI134의 생리적 특성 및 이 균에 의한 우유 발효물의 항비만효과)

  • Kim, Seulki;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.207-221
    • /
    • 2020
  • This study aimed to investigate the physiological characteristics and anti-obesity effects of milk fermented by L. plantarum KI134. The lipase, α-amylase, and α-glucosidase inhibitory activities of milk fermented by L. plantarum KI134 was 94.57±1.25%, 9.44±2.85%, and 2.74±1.24% (10 fold dilution), respectively. L. plantarum KI134 showed higher sensitivity to clindamycin and erythromycin in comparison to sixteen different antibiotics. It demonstrated the highest resistance toward ampicillin and vancomycin. The strain showed higher β-galactosidase, leucine arylamidase, valine arylamidase, acid phosphatase, β-glucosidase, and N-acetyl-β-glucosaminidase activities compared to other enzymes. It also did not produce carcinogenic enzymes, such as β-glucuronidase. The survival rate of L. plantarum KI134 in 0.3% bile was 96.90%. Moreover, the strain showed a 91.45% survival rate at a pH of 2.0. L. plantarum KI134 has resistance to Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus at the rates of 70.00%, 68.18%, 59.05%, and 40.63%, respectively. L. plantarum KI134 (23.01%) showed higher adhesion ability than the positive control (16.32%) L. rhamnosus GG. These results demonstrated that milk fermented by L. plantarum KI134 demonstrated an anti-obesity effect under in vitro conditions, with confirmed potential as a probiotic.