• Title/Summary/Keyword: Bile

Search Result 1,334, Processing Time 0.029 seconds

Roles of Bile Acid as an Active Biological Substance (담즙산의 생체 활성 물질로서의 역할)

  • Bang, Joon-Seok;Lee, Yu-Jeung;Jeong, Ji-Hoon;Sohn, Uy-Dong
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • The family of bile acids belongs to a group of molecular species of acidic steroids with very peculiar biological characteristics. They are synthesized by the liver from cholesterol through several complementary pathways and secreted into small intestine for the participation in the digestion and absorption of fat. The bile acids are mostly confined to the territories of the so-called enterohepatic circulation, which includes the liver, the biliary tree, the intestine and the portal blood with which bile acids are returned to the liver. In patients with bile acid malabsorption, the amount of primary bile acids in the colon is increased compared to healthy controls. Although the increase in the secondary bile acids including deoxycholic acid, is reported to have the potency to affect tumorigenesis in gastrointestinal tracts, there is no firm evidence that clinically relevant concentrations of the bile acids induce cancer. The list of their physiological roles, as well as that of the pathological processes is long and still not complete. There is no doubt that many new concepts, pharmaceutical tools and pharmacological uses of bile acids and their derivatives will emerge in the near future.

Bile Acid Modulation of Gastroinstinal Smooth Muscle Contraction and Ionic Currents

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.333-338
    • /
    • 2000
  • We have examined whether bile acids can affect the electrical and mechanical activities of circular smooth muscle of canine colon and ileum, using isometric tension measurement or patch clamp technique. It was found that a dilution of canine bile $(0.03{\sim}2%\;by\;volume)$ enhanced or inhibited the amplitude of spontaneous contractions. An individual component of bile, deoxycholic acid (DCA) enhanced the frequency and amplitude of the spontaneous contractile activity at $10^{-6}\;M,$ while DCA at $10^{-4}\;M$ inhibited the contraction. Similarly, the response to cholic acid was excitatory at $10^{-5}\;M$ and inhibitory at $3{\times}10^{-4}\;M.$ Taurocholic acid at $10^{-4}\;M$ enhanced the amplitude of muscle contraction. Electrically, canine bile at 1% reversibly depolarized the colonic myocytes under current clamp mode. Bile acids also elicited non-selective cation currents under voltage clamp studies, where $K^+$ currents were blocked and the $Cl^-$ gradient was adjusted so that $E_{Cl}^-$ was equal to -70 mV, a holding potential. The non-selective cation current might explain the depolarization caused by bile acids in intact muscles. Furthermore, the bile acid regulation of electrical and mechanical activities of intestinal smooth muscle may explain some of the pathophysiological conditions accompanying defects in bile reabsorption.

  • PDF

Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis

  • Kim, Hyeonhui;Fang, Sungsoon
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.140-146
    • /
    • 2018
  • Though bile acids have been well known as digestive juice, recent studies have demonstrated that bile acids bind to their endogenous receptors, including Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1; TGR5) and serve as hormone to control various biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism, immune responses, and energy metabolism. Deficiency of those bile acid receptors has been reported to induce diverse metabolic syndromes such as obesity, hyperlipidemia, hyperglycemia, and insulin resistance. As consistent, numerous studies have reported alteration of bile acid signaling pathways in type II diabetes patients. Interestingly, bile acids have shown to activate TGR5 in intestinal L cells and enhance secretion of glucagon-like peptide 1 (GLP-1) to potentiate insulin secretion in response to glucose. Moreover, FXR has been shown to crosstalk with TGR5 to control GLP-1 secretion. Altogether, bile acid receptors, FXR and TGR5 are potent therapeutic targets for the treatment of metabolic diseases, including type II diabetes.

Effects of Bupleuri Radix on Rat Hepatic COMT by Common Bile Duct Ligation and Taurocholate Load after Common Bile Duct Ligation (시호가 총담관결찰 및 Taurocholate 부하 흰쥐 간의 COMT 활성에 미치는 영향)

  • 김승모;윤주현;박재현
    • The Journal of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.68-76
    • /
    • 2000
  • Object : This study was earned out to examine the effect of Bupleuri Radix on experimental cholestasis, and make clear a part of this mechanism. Methods : Two models of common bile duct ligation group and taurocholate load group after common bile duct ligation were induced, and Bupleuri Radix extract was taken orally for 14 days. In the 1, 2, 4, 7 and l4days after treatment, cytosolic, mitochondrial and microsomal catechol-O-methyltransferase(COMT) activities in liver were measured. Results : The activities of cytosolic, mitochondrial and microsomal COMT increased in the Blupleuri Radix treated group after common bile duct ligation and after taurocholate load and common bile duct ligation. The activities of cytosolic and mitochondrial COMT increased particularly in Blupleuri Radix treated group after taurocholate load and common bile duct ligation. Conclusions : According to the result, it is considered that Blupleuri Radix not only improves cholestatis in liver, but also decreases a genetic synthesis of taurocholic acid.

  • PDF

Deconjugation of Bile Salts by Lactobacillus acidophilus (Lactobacillus acidophilus의 복합담즙산염 분해)

  • Im, Gwang-Se;Baek, Yeong-Jin;Im, Jeong-Hyeon;Kim, Hyeon-Uk;An, Yeong-Tae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.13-25
    • /
    • 2004
  • High concentration of cholesterol in the blood streams of humans has been recognized as a risk factor in the coronary heart disease. Recently, lactobacilli having high bile salt hydrolase activity have been claimed to decrease the concentration of the blood stream cholesterol in humans. In particular, many studies have been reported on the hypocholesterolemic effect of Lactobacillus acidophilus, a normal component of the microflora of the small intestine. Bile salts are excreted as bile into duodenum in the form of N-acyl compounds conjugated with glyine or taurine. Bile excretion is the major route of eliminating cholesterol from the body as well as one of the important pathways of cholesterol metabolism. Since conjugated bile salts are necessary to emulsify cholesterol, deconjugation of bile salts by lactobacilli could decrease intestinal absorption of cholesterol. Free bile salts as well as cholesterol are less soluble than the conjugated bile salts. Therefore, few free bile salts and cholesterol are absorbed through the enterohepatic circulation and most of them are easily excreted via feces. Thus, serum cholesterol could be removed from the body pool by synthesizing new conjugated bile salts to replace the excreted ones.

  • PDF

Assessment of Bile Salt Effects on S-Layer Production, slp Gene Expression and, Some Physicochemical Properties of Lactobacillus acidophilus ATCC 4356

  • Khaleghi, M.;Kermanshahi, R. Kasra;Yaghoobi, M.M.;Zarkesh-Esfahani, S.H.;Baghizadeh, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.749-756
    • /
    • 2010
  • In many conditions, bacterial surface properties are changed as a result of variation in the growth medium and conditions. This study examined the influence of bile salt concentrations (0-0.1%) on colony morphotype, hydrophobicity, $H_2O_2$ concentration, S-layer protein production, and slpA gene expression in Lactobacillus acidophilus ATCC 4356. It was observed that two types of colonies (R and S) were in the control group and the stress condition. When the bile level increased in the medium, the amount of S type was more than the R type. A stepwise increment in the bile concentration resulted in a stepwise decline in the maximum growth rate. The results showed that hydrophobicity was increased in 0.01%-0.02% bile, but it was decreased in 0.1% bile. Treatment by bile (0.01%-0.1%) profoundly decreased $H_2O_2$ formation. S-Layer protein and slpA gene expression were also altered by the stress condition. S-Protein expression was increased in the stress condition. The slpA gene expression increased in 0.01%-0.05% bile and it decreased in 0.1% bile. However, we found that different bile salt concentrations influenced the morphology and some surface properties of L. acidophilus ATCC 4356. These changes were very different in the 0.1% bile. It appears that the bacteria respond abruptly to 0.1% bile.

Extrahepatic Bile Duct Duplication with Intraductal Papillary Neoplasm: A Case Report (이중 담관 기형과 동반된 담관 관내 유두종 : 증례 보고)

  • Gayoung Jeon;Juwan Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.4
    • /
    • pp.964-970
    • /
    • 2021
  • Extrahepatic duct duplication is an extremely rare congenital anomaly. Hilar cholangiocarcinoma with extrahepatic bile duct duplication was reported; however, intraductal papillary neoplasm of the bile duct (IPNB) with extrahepatic bile duct duplication has not been reported to the best of our knowledge. We report a rare case of IPNB with extrahepatic bile duct duplication of a 64-year-old female. The patient underwent extended right hepatectomy, and the results of a subsequence histopathological examination were consistent with an IPNB with extrahepatic bile duct duplication. We report this rare case with radiologic imaging findings and a brief review of the current literature.

Clinico-biochemical Study on Experimental Partial and Complete Obstruction of the Common Bile Duct in Korean Goats (한국염소에서 실험적 총담관부분 및 완전폐쇄에 따른 임상생화학적 연구)

  • Yoo Ra-Gyeong;Cheong Jong-Tae;Nam Tchi-Chou
    • Journal of Veterinary Clinics
    • /
    • v.8 no.1
    • /
    • pp.71-80
    • /
    • 1991
  • Clinical signs, serum chemical values and histological findings of hepatic tissue after partial and complete obstruction of common bile duct in Korean goats were investigated. Abnormal clinical signs were not observed in partial obstruction of common bile duct, but in complete obstruction clinical signs such as jaundice, urine color change, were observed. Serum total bilirubin, total cholesterol, aspartate aminotransferase, sorbitol dehydrogenase, gamma glutamyltranspeptidase, and total protein values increased on the 1-4th day and then gradually decreased to normal level in partial obstruction. However, they tend to increase persistently by the 24th day in complete obstruction of common bileduct. Histologic features of hepatic tissue in partial obstruction were not changed as compared with normal hepatic tissue. On the other hand, in complete obstruction of common bite duct there were moderate bile duct proliferation in a portal area, rupture of bile canaliculi, phagocytosis of bile pigment by Kupffer cells, periportal fibrosis, intrahepatic bile stasis and hepatic cell necrosis.

  • PDF

Biochemical and Molecular Insights into Bile Salt Hydrolase in the Gastrointestinal Microflora - A Review -

  • Kim, Geun-Bae;Lee, Byong H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1505-1512
    • /
    • 2005
  • Bile salt deconjugation is the most biologically significant reaction among the bacterial alterations of bile acids in the gastrointestinal tract of human and animal. The responsible enzyme, bile salt hydrolase (BSH), catalyzes the hydrolysis of glycineand/or taurine-conjugated bile salts into amino acid residues and deconjugated bile acids. Herein we review current knowledge on the distribution of BSH activity among various microorganisms with respect to their biochemical and molecular characteristics. The proposed physiological impact of BSH activity on the host animal as well as on the BSH-producing bacterial cells is discussed. BSH activity of the probiotic strains is examined on the basis of BSH hypothesis, which was proposed to explain cholesterol-lowering effects of probiotics. Finally, the potential applications of BSH research are briefly discussed.

Bile Salt-Tolerance of Lactic Acid Bacteria under Anaerobic Broth System (혐기적 Broth System에서 젖산균의 담즙산염 내성)

  • 신용서;김성효;이갑상
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.513-518
    • /
    • 1995
  • To evaluate bile salt-tolerance of lactic acid bacteria (LAB, Lactobacillus acidophilus ATCC 4356, Lactobacillus casei IFO 3533, Streptococcus thermnophilus KCTC 2185, Lactobacillus lactis ATCC 4797, and Lactobacillus bulgaricus ATCC 11842), We investigated the survivals, acid production and $\beta $-galactosidase activity of LAB under anaerobic broth system. Cellular permeability of LAB and their cellular retention of $\beta $-galactosidase were also examined in the same system. Although the growth of LAB was slightly suppressed by 0.3% bile salt, they showed normal growth curve. Streptococcus thermophilus KCTC 2185 was significantly more resistant to bile salt than the others. The $\beta $-galactosidase activity from Streptococcus thermophilus KCTC 2185 and Lactobacillus bulgaricus ATCC 11842 and their cellular retention of $\beta $-galactosidase decreased by 0.3% bile salt. The cellular permeability of LAB in the presence of bile salt increased significantly.

  • PDF