• Title/Summary/Keyword: Bilayer liquid

Search Result 12, Processing Time 0.017 seconds

The optical characteristics of amorphous $Se_{75}Ge_{25}$ thin film by the low-energy lon beam exposure (저 에너지 이온빔 조사에 따른 비정질 $Se_{75}Ge_{25}$ 박막의 광학적 특성)

  • 이현용;오연한;정홍배
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.100-106
    • /
    • 1994
  • A bilayer film consisting of a layer of a-Se$_{75}$ Ge$_{25}$ with a surface layer of silver -100[.angs.] thick and a monolayer film of a-Se$_{75}$ Ge$_{25}$ are irradiated with 9[keV] Ga$^{+}$ ion beam. The Ga$^{+}$ ion (10$^{16}$ [ions/cm$^{2}$] exposed a-Se$_{75}$ Ge$_{25}$ and Ag/a-Se$_{75}$ Ge$_{25}$ thin films show an increase in optical absorption, and the absorption edge on irradiation with shifts toward longer wavelength. The shift toward longer wavelength called a "darkening effect" is observed also in film exposure to optical radiation(4.5*10$^{20}$ [photons/cm$^{2}$]). The 0.3[eV] edge shift for ion irradiation films is about twice to that obtained on irradiation with photons. These large changes are primarily due to structural changes, which lead to high etch selectivity and high sensitivity.

  • PDF

Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water (점착 유층과 계면활성제 액적의 충돌에 의한 에멀젼 형성)

  • Donghoon, Lee;Dohyung, Kim;Ildoo, Kim;Jinkee, Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.10-18
    • /
    • 2022
  • We present an experimental investigation on emulsions created during the impact process between a surfactant-laden droplet and an oil layer on water. By varying the surfactant concentration and the viscosity of oil layer, we created emulsions and visualized them using multi-dimensional high-speed imaging. Our analysis shows that the emulsions are more likely to be unstable and decay within a minute if the impacting droplet contains more surfactant. We also found that there are three mechanisms of generation of emulsions depending on the concentration of surfactant and the viscosity of oil layer; the jet pinch-off, cavity pinch-off, and tearing of oil layer. Jet and cavity pinch-off turned out to be dominant mechanisms for high oil viscosities, while tearing of oil layer is dominant for low oil viscosities. Our result is potentially useful in designing optimal dispersant properties for offshore oil contamination.