• 제목/요약/키워드: Bigkinds

검색결과 39건 처리시간 0.019초

토핑 모델링을 활용한 동해안 관광의 변화 분석 (The Analysis of Changes in East Coast Tourism using Topic Modeling)

  • 정은희
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.489-495
    • /
    • 2020
  • 4차혁명이 진행되고 있는 초연결사회에선 다양한 IT기기를 통해 데이터량이 증가하고 있고, 이렇게 생산된 데이터를 분석하여 새로운 가치를 창출 할 수 있다. 본 연구에서는 빅카인즈에서 2017년부터 2019년까지 중앙지, 경제지, 지역조합지, 주요방송사 등에서 "(동해안 관광 또는 동해안 여행) 그리고 강원도"라는 키워드로 기사를 총 1,526건을 수집하였다. 수집된 1,526건의 기사를 분석하기 위해 R언어로 구현된 LDA 알고리즘을 이용하여 토픽 모델링을 수행하였다. 2017년부터 2019년까지 각각의 년도별 키워드를 추출하고, 각 년도별로 빈도수가 높은 키워드를 분류하여 비교하였다. Log Likelihood와 Perplexity를 이용하여 최적의 토픽 수를 8로 설정한 후, 깁스 샘플링 방법으로 8가지의 토픽을 추론하였다. 추론된 토픽들은 강릉과 해변, 고성과 금강산, KTX와 동해북부선, 주말바다여행, 속초와 통일전망대, 양양과 서핑, 체험관광, 교통망 인프라이다. 추론된 8개의 토픽의 비중을 이용해 동해안 관광에 대한 기사들의 변화를 분석하였다. 그 결과, 통일전망대와 금강산의 비중은 큰 변화가 없는 것으로 나타났고, KTX와 체험관광의 비중은 증가하였고, 그 외의 토픽들의 비중은 2017년에 비해 2018년에 감소하였다. 2019년에는 KTX와 체험관광의 비중은 감소하였으나, 나머지 토픽들의 비중은 큰 변화가 없는 것으로 나타났다.

Comparative Analysis of News Big Data related to SARS-CoV, MERS-CoV, and SARS-CoV-2 (COVID-19)

  • Woo, Jae-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.91-101
    • /
    • 2021
  • 본 논문은 COVID-19로 인해 세계적인 팬데믹(Pandamic)을 경험하게 되면서 보건 분야, 정책 분야 등에 있어 포스트 코로나(Post-Corona)를 준비하기 위한 시사점을 도출하고자 한다. 국내 감염병 방역체계가 가동되었던 SARS-CoV, MERS-CoV, SARS-CoV-2(COVID-19)의 3개 감염병에 대해 발병 1년간의 시기적인 분석을 통해 언론사 뉴스 및 트렌드를 분석해보자는 것이다. 이를 위해 한국언론진흥재단 '빅카인즈' 뉴스 분석 프로그램을 활용하여 각 감염병이 국내에 영향이 미치던 시기를 기준점으로 1년간의 뉴스 기사 건수를 수치화하고 주요 트렌드를 워드클라우드로 구현하여 분석하였다. 분석 결과, 감염병과 관련한 기사 건수는 세계보건기구(WHO)의 경고 선언 및 (의심)확진자 발생 시점에 정점을 기록하였다. 키워드와 워드클라우드 분석에 따르면 감염병에 대한 '발병지 및 주요 유행지역', '방역당국', '질병정보 및 확진자 정보' 등이 주요한 공통점으로 나타났으며, 3개 감염병에서 차이점을 도출하였다. 아울러, 불확실 정보에 대하여 워드클라우드 분석을 수행함으로써 인포데믹 현황을 파악하였다. 본 연구결과는 앞서 경험하고 있는 감염병을 통해서 새로운 질병이 대유행할 시 선행되어야 하는 보건당국, 언론의 역할 및 재정비되어야 할 영역을 도출할 수 있었다는 점에서 의의를 갖는다.

언론 빅데이터를 이용한 장애인 경제활동 분석: 키워드의 시기별 동향과 이슈 탐지를 위한 시사점 (Examining Economic Activities of Disabled People Using Media Big Data: Temporal Trends and Implications for Issue Detection)

  • 원동섭;박한우
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.548-557
    • /
    • 2021
  • 본 연구는 장애인 경제활동 분야에서 정형화된 데이터의 한계성을 극복하기 위해 데이터 수집과 분석이 용이한 미디어에서 수집한 비정형 텍스트 데이터를 활용하여 빅데이터의 통계적 유용성을 파악하고자 하였다. '우선구매'가 '장애인직업재활'과 '장애인고용'에 미치는 영향에 대해 통계분석을 실시함과 동시에 의미망 분석을 병행하여 통계분석으로 파악할 수 없는 시기별 주된 이슈도 함께 파악하여 종합적인 결론을 도출하였다. 그 결과, 첫째 텍스트 의미망 분석결과 정부, 지자체 등 공공부문의 강한 주도성을 확인하였고 반면, 민간부문에서의 소비 활성화 동향과 최근 코로나19에 환경에서의 직업재활시설의 생산활동의 변화도 확인할 수 있었다. 둘째, 상관분석 결과 우선구매와 장애인직업재활, 장애인 고용이 각각 유의미한 상관관계를 나타냈다. 셋째, 회귀분석 결과도 마찬가지로 우선구매는 종속변수인 장애인직업재활, 장애인고용에 대해 각각 유의미한 영향을 미치는 것으로 나타났다. 향후 후속 연구들이 언론 빅데이터를 장애인 분야에서 이슈탐지를 위한 다양한 통계분석과 연구활동에 많이 활용될 것으로 전망하며 비정형 데이터의 접근성과 보편성이 높아질 것으로 예상된다.

텍스트 마이닝과 빅카인즈를 활용한 노인장기요양기관 부당청구 동향 분석 (Trend Analysis of Fraudulent Claims by Long Term Care Institutions for the Elderly using Text Mining and BIGKinds)

  • 윤기혁
    • 사물인터넷융복합논문지
    • /
    • 제8권2호
    • /
    • pp.13-24
    • /
    • 2022
  • 본 연구는 우리나라에서 매년 증가하고 있는 노인장기요양기관의 부당청구 맥락과 부당청구 예방을 위한 대책들이 어떠한지를 탐색하기 위해서 언론기사를 활용한 텍스트 마이닝 분석을 실시하였다. 기사는 뉴스 빅테이터 분석 시스템인 빅카인즈에서 수집하였고, 수집기간은 노인장기요양보험이 시행된 2008년 7월부터 2022년 2월 28일까지로 약 15년간이다. 이 기간 동안 '노인요양+부당청구', '장기요양+부당청구', 등의 키워드로 총 2,627개의 기사가 수집되었고, 이중 중복된 기사를 제외한 총 946개가 선정되었다. 본 연구의 텍스트마이닝 분석결과로 첫째, 모든 구간(2008.7.1-2022.2.28)에서 가장 높은 빈도로 언급된 상위 10위 키워드는 노인장기요양기관, 부당청구, 국민건강보험공단, 노인장기요양보험, 장기요양급여(비용), 노인요양시설, 보건복지부, 노인, 신고, 포상금(지급)의 순으로 나타났다. 둘째, N-gram 분석결과 장기요양급여(비용)과 부당청구, 부당청구와 노인장기요양기관, 허위와 부당청구, 신고와 포상금(지급), 노인장기요양기관과 신고 등의 순으로 나타났다. 셋째, TF-IDF 분석은 빈도분석의 결과와 유사하게 나타났지만, 신고, 포상금(지급), 증가 등은 순위가 상승하였다. 상기 분석결과를 바탕으로 노인장기요양기관 부당청구 예방을 위한 방향성을 제시하였다.

'우주 위험' 관련 뉴스 기사의 텍스트 마이닝 분석 연구 (Text Mining Analysis of News Articles Related to 'Space Hazard')

  • 조훈;손정주
    • 한국지구과학회지
    • /
    • 제43권1호
    • /
    • pp.224-235
    • /
    • 2022
  • 본 연구는 지난 12년간의 우주위험 관련 언론기사의 토픽모델링 분석을 통해 우주위험별 언론 보도 현황을 알아보기 위한 목적으로 수행되었다. 빅카인즈(BIGKinds)의 뉴스 플랫폼에서 2010년부터 2021년까지의 태양폭풍, 인공우주물체, 자연우주물체에 대한 우주위험 기사를 각각 1200여건 이상 수집하였으며, 키워드 분석, 잠재적 디리클레 할당모형(LDA) 분석을 수행하였다. 그 결과 태양폭풍 관련 기사는 3개의 토픽인 태양폭발이 인공위성에 미치는 영향, 우주전파센터를 중심으로 태양폭발이 우리나라 전파 통신에 미치는 영향, 항공종사자와 우주방사선의 관계로 요약되었다. 인공우주물체 관련 기사의 경우 3개의 토픽으로 인공위성과 우주정거장이 우주쓰레기로부터 위협을 받거나 그 자체가 우주쓰레기가 될 수 있다는 토픽, 영화를 통한 우주쓰레기와 인류의 관계에 대한 토픽, 우주쓰레기 추적·감시 및 처리를 위한 우주강국들의 노력이라는 토픽으로 요약되었다. 자연우주물체 관련 기사는 2개의 토픽으로 국제 우주기관의 근지구소행성에 대한 추적·감시와 충돌 대책과 소행성과 혜성 충돌을 중심으로 공룡과 포유류의 진화 및 멸종 원인으로 요약되었다. 이로부터 2010년부터 현재까지 국내 언론은 우주위험을 사회, 문화 등 다양한 영역에서 총 8개의 주제로 대중들에게 그 위험성과 경각심을 전하는 역할을 하고 있음을 확인하였으며, 이러한 결과를 기반으로 우주위험에 대한 교육방법과 교육정책의 필요성을 제언하였다.

뉴스기사 빅데이터의 키워드분석을 활용한 창업 트렌드 분석:2013~2022 (Analysis entrepreneurship trends using keyword analysis of news article Big Data :2013~2022)

  • 김재억;전병훈
    • Journal of Platform Technology
    • /
    • 제11권3호
    • /
    • pp.83-97
    • /
    • 2023
  • 본 연구는 시멘틱 네트워크 분석을 통해 방대한 뉴스 기사를 분석하여 창업 트렌드를 파악하고자 하였다. 한국언론진흥재단에서 제공하는 빅카인즈 기사 분석 서비스를 이용해 2013년 1월부터 2022년 12월까지 19개 신문사의 뉴스 기사 330,628건을 종합적으로 분석하였다. 이 연구는 사회적 환경과 글로벌 경제 트렌드가 창업에 미치는 영향을 고려하여 최근 10년 동안 주요 이슈의 변화를 탐구하는 데 중점을 두었다. 또한 코로나-19 팬데믹 전후의 뉴스 기사 수와 이슈 변화를 비교하여 빈도 분석, 관계 분석, 연관어 분석을 통해 창업 트렌드를 시각화 하여 제시하였다. 연구 결과, 창업 연관어의 상위 키워드는 창업의 활성화, 사업화 등이고, 코로나-19와 창업 키워드 간의 상관관계는 선형적인 의미에서 거의 무시할 수 있는 수준이었으나, 팬데믹 기간동안 뉴스 기사 수는 감소하여 영향을 미치는 것으로 나타났다. 특히 가장 많이 언급된 키워드는 중소벤처기업부, 장소는 미국, 인물은 한정화. 기관은 중소벤처기업부로 나타났으며 창업분야는 어떤 분야보다 사회적 이슈에 다각적인 영향을 받고,시기적 접근 빈도가 증가하는 중요한 특징이 나타났다. 본 연구결과는 창업 관련 이슈 및 사건에 대한 이해와 탐구에 필수적인 기초자료를 제공하여 향후 해당 분야 연구주제를 제안할 연구로서의 의미가 있다.

  • PDF

텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰 (An Investigation on the Periodical Transition of News related to North Korea using Text Mining)

  • 박철수
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.63-88
    • /
    • 2019
  • 북한의 변화와 동향 파악에 대한 연구는 북한관련 정책에 대한 방향을 결정하고 북한의 행위를 예측하여 사전에 대응 할 수 있다는 측면에서 매우 중요하다. 현재까지 북한 동향에 대한 연구는 전문가를 중심으로 과거 사례를 서술적으로 분석하여, 향후에 북한의 동향을 분석하고 대응하여 왔다. 이런 전문가 서술 중심의 북한 변화 및 동향 연구에서 비정형데이터를 이용한 텍스트마이닝 분석이 더해지면 보다 과학적인 북한 동향 분석이 가능할 것이다. 특히 북한의 동향 파악과 북한의 대남 관련 행위와 연관된 연구는 통일 및 국방 분야에서 매우 유용하며 필요한 분야이다. 본 연구에서는 북한의 신문 기사 내용을 활용한 텍스트마이닝 방법으로 북한과 관련한 핵심 단어를 구축하였다. 그리고 본 연구는 김정은 집권 이후 최근의 남북관계의 극적인 관계와 변화들을 기반으로 세 개의 기간을 나누고 이 기간 내에 국내 언론에 나타난 북한과 관련성이 높은 단어들을 시계열적으로 분석한 연구이다. 북한과 관련한 주요 단어들을 세 개의 기간별로 분류하고 당시에 북한의 태도와 동향에 따라 해당 단어와 주제들의 관련성이 어떻게 변화하였는지를 파악하였다. 본 연구는 텍스트마이닝을 이용한 연구가 남북관계 및 북한의 동향을 이해하고 분석하는 방법론으로서 얼마나 유용한 것이지를 파악하는 것이었다. 앞으로 북한의 동향 분석에 대한 연구는 물론 대북관계 및 정책에 대한 방향을 결정하고, 북한의 행위를 사전에 예측하여 대응 할 수 있는 북한 리스크 측정 모델 구축을 위한 연구로 진행 될 것이다.

텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로 (Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions)

  • 유소연;임규건
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.47-64
    • /
    • 2021
  • 전 세계적으로 퍼진 코로나 19 상황은 우리의 일상생활의 많은 부분에 영향을 끼쳤을 뿐만 아니라, 경제·사회 등 많은 부분에 걸쳐 막대한 영향력을 미치고 있다. 확진자와 사망자 수가 증가함에 따라 의료진과 대중은 불안, 우울, 스트레스 등 심리적인 문제를 겪고 있다고 한다. 장기적인 부정적인 감정은 사람들의 면역력을 감소시키고 신체적인 균형을 파괴할 수도 있으므로 코로나 19로 인한 심리적인 상태를 이해하는 것이 필수적인 상황이다. 본 연구에서는 코로나 19 감정과 관련된 뉴스 데이터를 수집하여, 텍스트 마이닝을 통해 키워드를 분류하고, 키워드 사이의 의미 네트워크 분석을 통해 단어들의 관계를 시각화하였다. 코로나 감정과 관련된 기사의 키워드에 나타난 단어들의 빈도수를 확인하고 이를 워드 클라우드로 분석하였다. 키워드 빈도 분석 결과 코로나 19 감정과 관련하여 '중국', '불안', '상황', '마음', '사회', '건강'과 같은 단어의 빈도가 높게 나타난 것을 확인할 수 있었다. 각 데이터 간 연결 중심성을 분석한 결과 키워드 중심성 네트워크에서 가장 중심적인 핵심어는 '심리'와 '코로나 19', '블루', '불안'이라는 단어가 높은 연결 중심성을 가지는 것을 확인할 수 있었다. 기사의 헤드라인에 나타난 주요 핵심어 사이의 동시 출현 빈도 네트워크를 그래프로 시각화한 결과, '코로나-블루' 쌍이 가장 굵게 표시되었고, '코로나-감정', '코로나-불안' 쌍이 비교적 굵은 선으로 표시된 것을 알 수 있었다. 코로나와 관련된 '블루'는 우울증을 의미하는 단어로, 코로나와 우울증은 이제 관심을 가져야 할 키워드임을 확인할 수 있었다. 본 연구에서는 장기화한 코로나 19 상황에서 신체적인 방역뿐만 아니라 심리적인 방역에도 힘써야 할 이 시기에 보건 정책담당자가 빠르고 복잡한 의사결정 과정에 도움이 되고자 미디어 뉴스를 모니터링 함으로써, 더욱더 쉬운 소셜 미디어 네트워크 분석 방법을 제시하고자 한다.

빅카인즈를 활용한 GenAI(생성형 인공지능) 기술 동향 분석: ChatGPT 등장과 스타트업 영향 평가 (GenAI(Generative Artificial Intelligence) Technology Trend Analysis Using Bigkinds: ChatGPT Emergence and Startup Impact Assessment)

  • 이현주;성창수;전병훈
    • 벤처창업연구
    • /
    • 제18권4호
    • /
    • pp.65-76
    • /
    • 2023
  • 기술 창업 및 스타트업 분야에서는 인공지능(AI)의 발전이 사업 모델 혁신의 핵심 주제로 부상하였다. 이를 통해 벤처기업들은 경쟁력 확보를 위해 AI를 중심으로 다양한 노력을 기울이고 있다. 본 연구는 GenAI 기술의 발전과 스타트업 생태계 간의 관계를 국내 뉴스 기사를 분석하여, 기술 창업 분야의 동향을 파악하는 것을 목적으로 하였다. 본 연구는 빅카인즈(BIG Kinds)를 활용하여 1990년부터 2023년 8월 10일까지의 국내 뉴스 기사에서 ChatGPT의 등장 전후를 중심으로 GenAI 관련 뉴스 기사, 주요 이슈 및 트렌드의 변화를 조사하였으며, 네트워크 분석 및 키워드 시각화를 통해 관련성을 시각화하였다. 연구결과, 2017년부터 2023년까지 GenAI에 대한 언급이 기사 내에서 점차 증가하였다. 특히, OpenAI의 GPT-3.5를 기반으로 한 ChatGPT 서비스가 주요 이슈로 부각 되었는데, 이 서비스는 OpenAI의 DALL-E, Google의 MusicLM, VoyagerX의 Vrew 등과 같은 언어 모델 기반 GenAI 기술의 대중화를 시사하였다. 이로써 생성형 인공지능은 다양한 분야에서의 유용성을 입증하며, ChatGPT 출시 이후 국내 기업들의 한국어 언어 모델 개발 활동이 활발히 이루어지고 있는 것으로 확인되었다. 리튼 테크놀로지스와 같은 스타트업들도 GenAI를 활용하여 기술 창업 분야에서의 영역을 확장하고 있다. 본 연구에서는 GenAI 기술과 스타트업 창업 활동 간의 연관성을 확인하였으며, 이는 혁신적인 비즈니스 전략의 구축 지원을 시사하며 GenAI 기술의 발전과 스타트업 생태계의 성장을 지속해서 형성할 것으로 전망된다. 더 나아가 국제적 동향 및 다양한 분석 방법의 활용, 실제 현장에서의 GenAI 응용 가능성을 모색하는 연구가 요구 된다. 이러한 노력은 GenAI 기술의 발전과 스타트업 생태계의 성장 발전에 이바지할 것으로 기대된다.

  • PDF