• Title/Summary/Keyword: Big6 Model

Search Result 314, Processing Time 0.029 seconds

A Stochastic Model for Virtual Data Generation of Crack Patterns in the Ceramics Manufacturing Process

  • Park, Youngho;Hyun, Sangil;Hong, Youn-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.596-600
    • /
    • 2019
  • Artificial intelligence with a sufficient amount of realistic big data in certain applications has been demonstrated to play an important role in designing new materials or in manufacturing high-quality products. To reduce cracks in ceramic products using machine learning, it is desirable to utilize big data in recently developed data-driven optimization schemes. However, there is insufficient big data for ceramic processes. Therefore, we developed a numerical algorithm to make "virtual" manufacturing data sets using indirect methods such as computer simulations and image processing. In this study, a numerical algorithm based on the random walk was demonstrated to generate images of cracks by adjusting the conditions of the random walk process such as the number of steps, changes in direction, and the number of cracks.

Design & Test of Stereo Camera Ground Model for Lunar Exploration

  • Heo, Haeng-Pal;Park, Jong-Euk;Shin, Sang-Youn;Yong, Sang-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.693-704
    • /
    • 2012
  • Space-born remote sensing camera systems tend to be developed to have very high performances. They are developed to provide extremely small ground sample distance, wide swath width, and good MTF (Modulation Transfer Function) at the expense of big volume, massive weight, and big power consumption. Therefore, the camera system occupies relatively big portion of the satellite bus from the point of mass and volume. However, the camera systems for lunar exploration don't need to have such high performances. Instead, it should be versatile for various usages under various operating environments. It should be light and small and should consume small power. In order to be used for national program of lunar exploration, electro-optical versatile camera system, called MAEPLE (Multi-Application Electro-Optical Payload for Lunar Exploration), has been designed after the derivation of camera system requirements. A ground model of the camera system has been manufactured to identify and secure relevant key technologies. The ground model was mounted on an aircraft and checked if the basic design concept would be valid and versatile functions implemented on the camera system would worked properly. In this paper, results of design and functional test performed with the field campaigns and air-born imaging are introduced.

Speed Trial Analysis of Korean Ice Breaking Research Vessel 'Araon' on the Big Floes (큰 빙판에서 아라온 호 쇄빙 속도 성능 해석)

  • Kim, Hyun Soo;Lee, Chun-Ju;Choi, Kyungsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.478-483
    • /
    • 2012
  • The speed performances of ice sea trial on the Arctic(2010 & 2011) area were shown different results depend on the ice floe size. Penetration phenomena of level ice was not happened on medium ice floe and tore up by the impact force because the mass of medium ice floe is similar to the mass of Araon which is Korean ice breaking research vessel and did not shut up by the ice ridge or iceberg. The sea trial on the Amundsen sea was performed at the big floe which is classified by WMO(World Meteorological Organization). Three measurements of ice properties and five results of speed trial were obtained with different ice thicknesses and engine powers. To evaluate speed of level ice trial and model test results at the same ice thickness and engine power, the correction method of HSVA(Hamburg Ship Model Basin) was used. The thickness, snow effect, flexural strength and friction coefficient were corrected to compare the speed of sea trial. The analyzed speed at 1.03m thickness of big floe was 5.85 knots at 10MW power and it's 6.10 knots at 1.0m ice thickness and the same power. It's bigger than the results of level ice because big floe was also slightly tore up by the impact force of vessel based on the observation of recorded video.

Providing Information Literacy Service in Liaison with School Curriculum (학교의 교육과정과 연계한 정보문해 서비스)

  • Byun, Woo-Bock
    • Journal of Korean Library and Information Science Society
    • /
    • v.38 no.4
    • /
    • pp.19-44
    • /
    • 2007
  • In this research, we have identified problems and countermeasures when school library provides information literacy service in liaison with school curriculum. The problems were misunderstanding information literacy as ICT skills, lack of books and librarians, and etc. So we emphasize importance of library and information in information literacy. And for countermeasures, we provide online guide to library resources, 'BIG6 problem solving model' for information literacy teaching-learning, teaching-learning plans for information literacy, formats for teaching-learning process.

  • PDF

Deep Learning-based Material Object Recognition Research for Steel Heat Treatment Parts (딥러닝 기반 객체 인식을 통한 철계 열처리 부품의 인지에 관한 연구)

  • Hye-Jung, Park;Chang-Ha, Hwang;Sang-Gwon, Kim;Kuk-Hyun, Yeo;Sang-Woo, Seo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.327-336
    • /
    • 2022
  • In this study, a model for automatically recognizing several steel parts through a camera before charging materials was developed under the assumption that the temperature distribution in the pre-air atmosphere was known. For model development, datasets were collected in random environments and factories. In this study, the YOLO-v5 model, which is a YOLO model with strengths in real-time detection in the field of object detection, was used, and the disadvantages of taking a lot of time to collect images and learning models was solved through the transfer learning methods. The performance evaluation results of the derived model showed excellent performance of 0.927 based on mAP 0.5. The derived model will be applied to the model development study, which uses the model to accurately recognize the material and then match it with the temperature distribution in the atmosphere to determine whether the material layout is suitable before charging materials.

Analyzing Factors of Success of Film Using Big Data : Focusing on the SNS Utilization Index and Topic Keywords of the Film (빅데이터를 활용한 영화흥행 요인 분석: 영화 <기생충>의 SNS 활용지수와 토픽키워드 중심으로)

  • Kim, Jin-Wook
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • In the rapidly changing era of the fourth industry, big data is being used in various fields. In recent years, the use of big data has been rapidly applied to overall cultural and artistic contents, and among them, the use of big data is essential as a film genre with a lot of capital. This research method is analyzed as the film , which won the Palme d'Or Prize of the 72nd Cannes Film Festival in 2019 and the works and directors' award at the Academy Awards. The analyzed value predicts the film's performance through opinion mining, which gives the value of the change and sensitivity of each data cycle, and extracts the utilization index and topic keywords of SNS such as Facebook and Twitter to reflect the audience's interest. Identify the factors. As such, if model performance and model development can be predicted through model analysis of film performance using big data, the efficiency of the film production process will be maximized while the risk of production cost and the risk of film failure will be minimized.

KISTI-ML Platform: A Community-based Rapid AI Model Development Tool for Scientific Data (KISTI-ML 플랫폼: 과학기술 데이터를 위한 커뮤니티 기반 AI 모델 개발 도구)

  • Lee, Jeongcheol;Ahn, Sunil
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.73-84
    • /
    • 2019
  • Machine learning as a service, the so-called MLaaS, has recently attracted much attention in almost all industries and research groups. The main reason for this is that you do not need network servers, storage, or even data scientists, except for the data itself, to build a productive service model. However, machine learning is often very difficult for most developers, especially in traditional science due to the lack of well-structured big data for scientific data. For experiment or application researchers, the results of an experiment are rarely shared with other researchers, so creating big data in specific research areas is also a big challenge. In this paper, we introduce the KISTI-ML platform, a community-based rapid AI model development for scientific data. It is a place where machine learning beginners use their own data to automatically generate code by providing a user-friendly online development environment. Users can share datasets and their Jupyter interactive notebooks among authorized community members, including know-how such as data preprocessing to extract features, hidden network design, and other engineering techniques.

The Detection Model of Disaster Issues based on the Risk Degree of Social Media Contents (소셜미디어 위험도기반 재난이슈 탐지모델)

  • Choi, Seon Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.121-128
    • /
    • 2016
  • Social Media transformed the mass media based information traffic, and it has become a key resource for finding value in enterprises and public institutions. Particularly, in regards to disaster management, the necessity for public participation policy development through the use of social media is emphasized. National Disaster Management Research Institute developed the Social Big Board, which is a system that monitors social Big Data in real time for purposes of implementing social media disaster management. Social Big Board collects a daily average of 36 million tweets in Korean in real time and automatically filters disaster safety related tweets. The filtered tweets are then automatically categorized into 71 disaster safety types. This real time tweet monitoring system provides various information and insights based on the tweets, such as disaster issues, tweet frequency by region, original tweets, etc. The purpose of using this system is to take advantage of the potential benefits of social media in relations to disaster management. It is a first step towards disaster management that communicates with the people that allows us to hear the voice of the people concerning disaster issues and also understand their emotions at the same time. In this paper, Korean language text mining based Social Big Board will be briefly introduced, and disaster issue detection model, which is key algorithms, will be described. Disaster issues are divided into two categories: potential issues, which refers to abnormal signs prior to disaster events, and occurrence issues, which is a notification of disaster events. The detection models of these two categories are defined and the performance of the models are compared and evaluated.

Constructing a Standard Clinical Big Database for Kidney Cancer and Development of Machine Learning Based Treatment Decision Support Systems (신장암 표준임상빅데이터 구축 및 머신러닝 기반 치료결정지원시스템 개발)

  • Song, Won Hoon;Park, Meeyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1083-1090
    • /
    • 2022
  • Since renal cell carcinoma(RCC) has various examination and treatment methods according to clinical stage and histopathological characteristics, it is required to determine accurate and efficient treatment methods in the clinical field. However, the process of collecting and processing RCC medical data is difficult and complex, so there is currently no AI-based clinical decision support system for RCC treatments worldwide. In this study, we propose a clinical decision support system that helps clinicians decide on a precision treatment to each patient. RCC standard big database is built by collecting structured and unstructured data from the standard common data model and electronic medical information system. Based on this, various machine learning classification algorithms are applied to support a better clinical decision making.

A Study on Anomaly Signal Detection and Management Model using Big Data (빅데이터를 활용한 이상 징후 탐지 및 관리 모델 연구)

  • Kwon, Young-baek;Kim, In-seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.287-294
    • /
    • 2016
  • APT attack aimed at the interruption of information and communication facilities and important information leakage of companies. it performs an attack using zero-day vulnerabilities, social engineering base on collected information, such as IT infra, business environment, information of employee, for a long period of time. Fragmentary response to cyber threats such as malware signature detection methods can not respond to sophisticated cyber-attacks, such as APT attacks. In this paper, we propose a cyber intrusion detection model for countermeasure of APT attack by utilizing heterogeneous system log into big-data. And it also utilizes that merging pattern-based detection methods and abnormality detection method.