• 제목/요약/키워드: Big data planning

검색결과 255건 처리시간 0.03초

공간 빅데이터를 위한 동태적 시각화 모형의 개발과 적용 (Development and Application of Dynamic Visualization Model for Spatial Big Data)

  • 김동한;김다윗
    • 한국지리정보학회지
    • /
    • 제21권1호
    • /
    • pp.57-70
    • /
    • 2018
  • 빅데이터 시대로 진입하게 되면서 전 세계적으로 생산 및 공유되어지는 무수한 양의 데이터를 활용하고자 하는 노력이 곳곳에서 이루어지고 있다. 특히, 이러한 데이터와 발전된 기술을 통해 국토와 도시 공간에서 일어나는 현상들을 분석함으로써 기존의 전통적 방식에서 보여주지 못하던 새로운 정보를 제공 할 수 있는 가능성과 이에 대한 기대가 커지고 있다. 따라서 기존의 틀을 넘어서는 정보의 구득 방식, 활용 및 전달을 위한 과학적이고 효과적인 방법과 수단이 필요하며 이를 공공의 의사결정의 지원수단으로 활용하려는 노력도 함께 요구된다. 이 연구는 국토도시계획지원(planning support)의 한 수단으로 공간 빅데이터의 동태적 시각화 모형의 개발과 실증적용에 주요한 목적을 두고 수행하였다. 주요한 내용은 다음과 같다. 첫째, 데이터 시각화의 개념과 의미와 함께 계획지원 또는 의사결정에서의 공간 빅데이터 시각화의 적용이 가지는 효용성을 살펴보고 시사점을 고찰하였다. 둘째, 공간 빅데이터 동태적 시각화 모형을 개발하고, 제주도를 대상으로 실증적용을 수행하였다. 도시 공간의 현황 파악과 문제 해결을 지원하기 위한 데이터의 시각화 자체는 새로운 것은 아니다. 그러나 빅데이터와 새로운 시각화 툴을 활용할 경우 기존의 방식과는 차별되는 결과를 도출할 수 있다. 본 연구는 위와 같은 내용을 바탕으로 향후 계획지원을 위한 데이터 시각화의 활용성을 체계적으로 검토하고, 이를 확대하기 위한 방안을 구축하는데 필요한 시사점을 제시하였다.

Implementing a Sustainable Decision-Making Environment - Cases for GIS, BIM, and Big Data Utilization -

  • Kim, Hwan-Yong
    • 한국BIM학회 논문집
    • /
    • 제6권3호
    • /
    • pp.24-33
    • /
    • 2016
  • Planning occurs from day-to-day, small-scale decisions to large-scale infrastructure investment decisions. For that reason, various attempts have been made to appropriately assist decision-making process and its optimization. Lately, initiation of a large amount of data, also known as big data has received great attention from diverse disciplines because of versatility and adoptability in its use and possibility to generate new information. Accordingly, implementation of big data and other information management systems, such as geographic information systems (GIS) and building information modeling (BIM) have received enough attention to establish each of its own profession and other associated activities. In this extent, this study illustrates a series of big data implementation cases that can provide a lesson to urban planning domain. In specific, case studies analyze how data was used to extract the most optimized solution and what aspects could be helpful in relation to planning decisions. Also, important notions about GIS and its application in various urban cases are examined.

도시 빅데이터: 모바일 센싱 데이터를 활용한 도시 계획을 위한 사회 비용 분석 (Urban Big Data: Social Costs Analysis for Urban Planning with Crowd-sourced Mobile Sensing Data)

  • 신동윤
    • 한국BIM학회 논문집
    • /
    • 제13권4호
    • /
    • pp.106-114
    • /
    • 2023
  • In this study, we developed a method to quantify urban social costs using mobile sensing data, providing a novel approach to urban planning. By collecting and analyzing extensive mobile data over time, we transformed travel patterns into measurable social costs. Our findings highlight the effectiveness of big data in urban planning, revealing key correlations between transportation modes and their associated social costs. This research not only advances the use of mobile data in urban planning but also suggests new directions for future studies to enhance data collection and analysis methods.

보행행태조사방법론의 변화와 모바일 빅데이터의 가능성 진단 연구 - 보행환경 분석연구 최근 사례를 중심으로 - (Changes in Measuring Methods of Walking Behavior and the Potentials of Mobile Big Data in Recent Walkability Researches)

  • 김현주;박소현;이선재
    • 대한건축학회논문집:계획계
    • /
    • 제35권1호
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to evaluate the walking behavior analysis methodology used in the previous studies, paying attention to the demand for empirical data collecting for urban and neighborhood planning. The preceding researches are divided into (1)Recording, (2) Surveys, (3)Statistical data, (4)Global positioning system (GPS) devices, and (5)Mobile Big Data analysis. Next, we analyze the precedent research and identify the changes of the walkability research. (1)being required empirical data on the actual walking and moving patterns of people, (2)beginning to be measured micro-walking behaviors such as actual route, walking facilities, detour, walking area. In addition, according to the trend of research, it is analyzed that the use of GPS device and the mobile big data are newly emerged. Finally, we analyze pedestrian data based on mobile big data in terms of 'application' and distinguishing it from existing survey methodology. We present the possibility of mobile big data. (1)Improvement of human, temporal and spatial constraints of data collection, (2)Improvement of inaccuracy of collected data, (3)Improvement of subjective intervention in data collection and preprocessing, (4)Expandability of walking environment research.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

공공데이터를 활용한 국가정보화 전략연구 - 시나리오플래닝을 적용하여 - (The Study on Strategy of National Information for Electronic Government of S. Korea with Public Data analysed by the Application of Scenario Planning)

  • 이상윤;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1259-1273
    • /
    • 2012
  • 최근의 웹에서 유비쿼터스로의 지식정보화사회의 급속한 진행에 의한 IT와 컴퓨팅기술에 있어서의 빅데이터 시대라는 새로운 패러다임 도래는 한국 정부 및 각국 정부에 있어, 전자정부 및 국가정보화 추진에 있어서의 주목할 만한 전환점이 되고 있다. 따라서 본 연구는 미래예측방법으로 많이 활용되고 있는 시나리오 플래닝 방법론을 적용하여 한국 전자정부 및 국가정보화 발전의 바람직한 미래상을 도출하였다. 곧 빅데이터 시대에 합당한 한국 전자정부 및 국가정보화의 상대적 미래우위전략을 찾고자, 정부의 빅데이터인 공공데이터의 활용에 대한 발전방안을 모색하였으며, 그 결과 한국의 전자정부 및 국가정보화에 부합하는 공공데이터를 활용한 대국민공개강화 전략을 도출하였다. 또한 '인간의 이해'보다는 '기계의 이해'를 지향하는 시멘틱웹 기술과 함께하는 링크드데이터 기술의 적용 아래에서의 개발을 제안하였다.

빅데이터 시장 분석을 위한 에코시스템 설계 (Design of Ecosystems to Analyze Big Data Market)

  • 이상원;박승범;신성윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제49차 동계학술대회논문집 22권1호
    • /
    • pp.433-434
    • /
    • 2014
  • Big Data services is composed of Big Data user, Big Data service provider, and Big Data application provider. And it is possible to extend the service to interplay-reciprocal actions among three subjects such as providing, being provided, connecting, being connected, and so on. In this paper, we propose an ecosystems of Big Data and a framework of its service.

  • PDF

항공기 제조업에서 생산계획 동기화를 통한 데이터기반 구매조달 및 재고관리 방안 연구 (A Scheme of Data-driven Procurement and Inventory Management through Synchronizing Production Planning in Aircraft Manufacturing Industry)

  • 유경열;최홍석;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권1호
    • /
    • pp.151-177
    • /
    • 2021
  • Purpose This paper aims to improve management performance by effectively responding to production needs and reducing inventory through synchronizing production planning and procurement in the aviation industry. In this study, the differences in production planning and execution were first analyzed in terms of demand, supply, inventory, and process using the big data collected from a domestic aircraft manufacturers. This paper analyzed the problems in procurement and inventory management using legacy big data from ERP system in the company. Based on the analysis, we performed a simulation to derive an efficient procurement and inventory management plan. Through analysis and simulation of operational data, we were able to discover procurement and inventory policies to effectively respond to production needs. Design/methodology/approach This is an empirical study to analyze the cause of decrease in inventory turnover and increase in inventory cost due to dis-synchronize between production requirements and procurement. The actual operation data, a total of 21,306,611 transaction data which are 18 months data from January 2019 to June 2020, were extracted from the ERP system. All them are such as basic information on materials, material consumption and movement history, inventory/receipt/shipment status, and production orders. To perform data analysis, it went through three steps. At first, we identified the current states and problems of production process to grasp the situation of what happened, and secondly, analyzed the data to identify expected problems through cross-link analysis between transactions, and finally, defined what to do. Many analysis techniques such as correlation analysis, moving average analysis, and linear regression analysis were applied to predict the status of inventory. A simulation was performed to analyze the appropriate inventory level according to the control of fluctuations in the production planing. In the simulation, we tested four alternatives how to coordinate the synchronization between the procurement plan and the production plan. All the alternatives give us more plausible results than actual operation in the past. Findings Based on the big data extracted from the ERP system, the relationship between the level of delivery and the distribution of fluctuations was analyzed in terms of demand, supply, inventory, and process. As a result of analyzing the inventory turnover rate, the root cause of the inventory increase were identified. In addition, based on the data on delivery and receipt performance, it was possible to accurately analyze how much gap occurs between supply and demand, and to figure out how much this affects the inventory level. Moreover, we were able to obtain the more predictable and insightful results through simulation that organizational performance such as inventory cost and lead time can be improved by synchronizing the production planning and purchase procurement with supply and demand information. The results of big data analysis and simulation gave us more insights in production planning, procurement, and inventory management for smart manufacturing and performance improvement.

스마트카드 빅데이터를 이용한 서울시 지역별 대중교통 이동 편의성 분석 (Analysis of Regional Transit Convenience in Seoul Public Transportation Networks Using Smart Card Big Data)

  • 문현구;오규협;김상국;정재윤
    • 대한산업공학회지
    • /
    • 제42권4호
    • /
    • pp.296-303
    • /
    • 2016
  • In public transportation, smart cards have been introduced for the purpose of convenient payment systems. The smart card transaction data can be utilized not only for the exact and convenient payment but also for civil planning based on travel tracking of citizens. This paper focuses on the analysis of the transportation convenience using the smart card big data. To this end, a new index is developed to measure the transit convenience of each region by considering how passengers actually experience the transportation network in their travels. The movement data such as movement distance, time and amount between regions are utilized to access the public transportation convenience of each region. A smart card data of five working days in March is used to evaluate the transit convenience of each region in Seoul city. The contribution of this study is that a new transit convenience measure was developed based on the reality data. It is expected that this measure can be used as a means of quantitative analysis in civil planning such as a traffic policy or local policy.

개인정보보호법에 기반한 빅데이터 활용 방안 연구 (A study on Utilization of Big Data Based on the Personal Information Protection Act)

  • 김병철
    • 디지털융복합연구
    • /
    • 제12권12호
    • /
    • pp.87-92
    • /
    • 2014
  • 최근 대규모 데이터 처리와 다양한 형태의 데이터 처리 기술이 진화함에 따라 사회문제 진단 및 현안 해결 도구로써 빅데이터의 잠재력에 주목하고 있다. 동시에 빅데이터의 위험요소로 프라이버시 문제가 강력하게 제기되고 있기도 하다. 빅데이터의 적극적인 활용과 프라이버시 문제는 서로 상충되는 관례로써 본 논문에서는 이와 관련한 당면한 문제점을 지적하고, 해외 선진국의 사례분석을 통해 우리나라의 개인정보보호에 기반한 빅데이터 활용방안을 제안하고자 한다.