• 제목/요약/키워드: Big data modeling

검색결과 334건 처리시간 0.026초

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

빅데이터를 위한 가치사슬 설계 (Modeling of Value Chain for Big Data)

  • 이상원;박승범;이주민;안현섭;최용구
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.277-278
    • /
    • 2015
  • The volume sub-challenge requires novel approaches, often referred to as Big Data technologies and methodologies. Data is generated constantly in an ever growing number of places and by an ever growing number of actors while a large proportion of potentially re-usable data resides within silos within institutions or companies. These are needed when conventional database technologies cannot be applied to storage and computing issues. The issue of big data has been referred to as the next frontier in computing. In this paper, we research on factors to design an organizational value chain for Big Data.

  • PDF

빅데이터를 위한 정책결정 설계 (Modeling of Policy Making for Big Data)

  • 이상원;박승범;김성현;채성욱
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.281-282
    • /
    • 2015
  • Data, by itself, will not reveal the optimal policy choice. Nor will data alone tell us what problems to focus on or how to direct resources. It should be recognized upfront that data-driven policy making cannot provide all the answers to the challenges of good governance. Policy decisions always depend on a combination of facts, analysis, judgment, and values. In this paper, we research on factors to design an organizational policy making for Big Data.

  • PDF

Implementing a Sustainable Decision-Making Environment - Cases for GIS, BIM, and Big Data Utilization -

  • Kim, Hwan-Yong
    • 한국BIM학회 논문집
    • /
    • 제6권3호
    • /
    • pp.24-33
    • /
    • 2016
  • Planning occurs from day-to-day, small-scale decisions to large-scale infrastructure investment decisions. For that reason, various attempts have been made to appropriately assist decision-making process and its optimization. Lately, initiation of a large amount of data, also known as big data has received great attention from diverse disciplines because of versatility and adoptability in its use and possibility to generate new information. Accordingly, implementation of big data and other information management systems, such as geographic information systems (GIS) and building information modeling (BIM) have received enough attention to establish each of its own profession and other associated activities. In this extent, this study illustrates a series of big data implementation cases that can provide a lesson to urban planning domain. In specific, case studies analyze how data was used to extract the most optimized solution and what aspects could be helpful in relation to planning decisions. Also, important notions about GIS and its application in various urban cases are examined.

Comparing Social Media and News Articles on Climate Change: Different Viewpoints Revealed

  • Kang Nyeon Lee;Haein Lee;Jang Hyun Kim;Youngsang Kim;Seon Hong Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2966-2986
    • /
    • 2023
  • Climate change is a constant threat to human life, and it is important to understand the public perception of this issue. Previous studies examining climate change have been based on limited survey data. In this study, the authors used big data such as news articles and social media data, within which the authors selected specific keywords related to climate change. Using these natural language data, topic modeling was performed for discourse analysis regarding climate change based on various topics. In addition, before applying topic modeling, sentiment analysis was adjusted to discover the differences between discourses on climate change. Through this approach, discourses of positive and negative tendencies were classified. As a result, it was possible to identify the tendency of each document by extracting key words for the classified discourse. This study aims to prove that topic modeling is a useful methodology for exploring discourse on platforms with big data. Moreover, the reliability of the study was increased by performing topic modeling in consideration of objective indicators (i.e., coherence score, perplexity). Theoretically, based on the social amplification of risk framework (SARF), this study demonstrates that the diffusion of the agenda of climate change in public news media leads to personal anxiety and fear on social media.

Big Data Analytics Applied to the Construction Site Accident Factor Analysis

  • KIM, Joon-soo;Lee, Ji-su;KIM, Byung-soo
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.678-679
    • /
    • 2015
  • Recently, safety accidents in construction sites are increasing. Accordingly, in this study, development of 'Big-Data Analysis Modeling' can collect articles from last 10 years which came from the Internet News and draw the cause of accidents that happening per season. In order to apply this study, Web Crawling Modeling that can collect 98% of desired information from the internet by using 'Xml', 'tm', "Rcurl' from the library of R, a statistical analysis program has been developed, and Datamining Model, which can draw useful information by using 'Principal Component Analysis' on the result of Work Frequency of 'Textmining.' Through Web Crawling Modeling, 7,384 out of 7,534 Internet News articles that have been posted from the past 10 years regarding "safety Accidents in construction sites", and recognized the characteristics of safety accidents that happening per season. The result showed that accidents caused by abnormal temperature and localized heavy rain, occurred frequently in spring and winter, and accidents caused by violation of safety regulations and breakdown of structures occurred frequently in spring and fall. Plus, the fact that accidents happening from collision of heavy equipment happens constantly every season was acknowledgeable. The result, which has been obtained from "Big-Data Analysis Modeling" corresponds with prior studies. Thus, the study is reliable and able to be applied to not only construction sites but also in the overall industry.

  • PDF

Big Data Analysis of Weather Condition and Air Quality on Cosmetics Marketing

  • Wang, Zebin;Wu, Tong;Zhao, Xinshuang;Cheng, Shuchun;Dai, Genghui;Dai, Weihui
    • Journal of Information Technology Applications and Management
    • /
    • 제24권3호
    • /
    • pp.93-105
    • /
    • 2017
  • Demands of cosmetics are affected not only by the well-known elements such as brand, price, and customer's consumption capacity, but also by some latent factors, for example, weather and air environment. Due to complexity and dynamic changes of the above factors, their influences can hardly be estimated in an accurate way by the traditional approaches such as survey and questionnaires. Through modeling and statistical analysis of big data, this article studied the impacts of weather condition and air quality on customer flow and sales of the cosmetics distributors in China, and found several hidden influencing factors. It provided a big-data based method for the analysis of unconventional factors on cosmetics marketing in the changing weather condition and air environment.

Modeling and Implementation of Public Open Data in NoSQL Database

  • Min, Meekyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권3호
    • /
    • pp.51-58
    • /
    • 2018
  • In order to utilize various data provided by Korea public open data portal, data should be systematically managed using a database. Since the range of open data is enormous, and the amount of data continues to increase, it is preferable to use a database capable of processing big data in order to analyze and utilize the data. This paper proposes data modeling and implementation method suitable for public data. The target data is subway related data provided by the public open data portal. Schema of the public data related to Seoul metro stations are analyzed and problems of the schema are presented. To solve these problems, this paper proposes a method to normalize and structure the subway data and model it in NoSQL database. In addition, the implementation result is shown by using MongDB which is a document-based database capable of processing big data.

빅데이터를 위한 집단자료 설계 (Modeling of Crowd Source for Big Data)

  • 이상원;박승범
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.283-284
    • /
    • 2015
  • We can picture a workforce that extends beyond your employees: one that consists of any user connected to the Internet. Cloud, social, and collaboration technologies now allow organizations to tap into vast pools of resources across the world, many of whom are motivated to help. Channeling these efforts to drive business goals is a challenge, but the opportunity is enormous: it can give every business access to an immense, agile workforce that is not only better suited to solving some of the problems that organizations struggle with today but in many cases will do it for free. In this paper, we research on factors to design an organizational crowd source for Big Data.

  • PDF

소셜미디어 토픽모델링을 통한 스마트폰 마케팅 전략 수립 지원 (A Topic Modeling Approach to Marketing Strategies for Smartphone Companies)

  • 차윤정;이지혜;최지은;김희웅
    • 지식경영연구
    • /
    • 제16권4호
    • /
    • pp.69-87
    • /
    • 2015
  • Given the huge number of data produced by its users, SNS is a great source of customer insights. Since viral trends in SNS reflect customers' direct feedback, companies can draw out highly meaningful business insights when such data is effectively analyzed and managed. However, while the importance of understanding SNS big data keeps growing, the methods for analyzing atypical data such as SNS postings for business insights over product has not been well studied. This study aims to demonstrate the way to exploit topic modeling method to support marketing strategy generation and therefore leverage business process. First, we conducted topic modeling analysis for twitter data of Apple and Samsung smartphones. Then we comparatively examined the analysis results to draw meaningful market insights about each smartphone product. Finally, we draw out a strategic marketing recommendation for each smartphone brand based on the findings.