• 제목/요약/키워드: Big data analysis system

검색결과 1,040건 처리시간 0.023초

Operating Simulation of RPS using DEVS W/S in Web Service Environment

  • Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권12호
    • /
    • pp.107-114
    • /
    • 2016
  • Web system helps high-performance processing for big-data analysis and practical use to make various information using IT resources. The government have started the RPS system in 2012. The system invigorates the electricity production as using renewable energy equipment. The government operates system gathered big-data with various related information system data and the system users are distributed geographically. The companies have to fulfill the system, are available to purchase the REC to other electricity generation company sellers to procure REC for their duty volumes. The REC market operates single auction methods with users a competitive price. But the price have the large variation with various user trading strategy and sellers situations. This papler proposed RPS system modeling and simulation in web environment that is modeled in geographically distributed computing environment for web user with DEVS W/S. Web simulation system base on web service helps to analysis correlation and variables that act on trading price and volume within RPS big-data and the analysis can be forecast REC price.

Big data-based piping material analysis framework in offshore structure for contract design

  • Oh, Min-Jae;Roh, Myung-Il;Park, Sung-Woo;Chun, Do-Hyun;Myung, Sehyun
    • Ocean Systems Engineering
    • /
    • 제9권1호
    • /
    • pp.79-95
    • /
    • 2019
  • The material analysis of an offshore structure is generally conducted in the contract design phase for the price quotation of a new offshore project. This analysis is conducted manually by an engineer, which is time-consuming and can lead to inaccurate results, because the data size from previous projects is too large, and there are so many materials to consider. In this study, the piping materials in an offshore structure are analyzed for contract design using a big data framework. The big data technologies used include HDFS (Hadoop Distributed File System) for data saving, Hive and HBase for the database to handle the saved data, Spark and Kylin for data processing, and Zeppelin for user interface and visualization. The analyzed results show that the proposed big data framework can reduce the efforts put toward contract design in the estimation of the piping material cost.

통합보안관리시스템 보안 분석 및 개선 (Security Analysis and Improvement of Integrated Security Management System)

  • 김경신
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.15-23
    • /
    • 2015
  • 본 논문은 지난 2012년 이후 떠오른 개념인 '빅 데이터'의 등장으로 정보보안 환경이 어떻게 변화되고 있는지, 빅 데이터와 관련된 분석 기술을 바탕으로 보안위협으로부터 어떤 통합보안시스템을 구축해야 하는지 제안하고자 한다. 빅 데이터 분야에 대해서는 최근 활용 분야에 대한 연구가 활발히 진행 중이며 APT(Advanced Persistent Threats)와 같은 보안 위협으로부터 보호하기 위해 빅 데이터 기반 통합보안관리시스템에서는 어떤 요구사항이 필요한 지 살펴보고자 한다. 또한, 기존 통합보안관리시스템과 현재 빅 데이터 기반 통합보안관리시스템을 비교 분석하며 한계점은 무엇이며 보완되어야 할 점을 제안하여 개선된 통합보안관리시스템을 제안하고자 한다.

Cloud Computing Platforms for Big Data Adoption and Analytics

  • Hussain, Mohammad Jabed;Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.290-296
    • /
    • 2022
  • Big Data is a data analysis technology empowered by late advances in innovations and engineering. In any case, big data involves a colossal responsibility of equipment and handling assets, making reception expenses of big data innovation restrictive to little and medium estimated organizations. Cloud computing offers the guarantee of big data execution to little and medium measured organizations. Big Data preparing is performed through a programming worldview known as MapReduce. Normally, execution of the MapReduce worldview requires organized joined stockpiling and equal preparing. The computing needs of MapReduce writing computer programs are frequently past what little and medium measured business can submit. Cloud computing is on-request network admittance to computing assets, given by an external element. Normal arrangement models for cloud computing incorporate platform as a service (PaaS), software as a service (SaaS), framework as a service (IaaS), and equipment as a service (HaaS).

빅데이터 처리시간 감소와 저장 효율성이 향상을 위한 맵리듀스 기반 빅데이터 처리 기법 구현 (Implement of MapReduce-based Big Data Processing Scheme for Reducing Big Data Processing Delay Time and Store Data)

  • 이협건;김영운;김기영
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.13-19
    • /
    • 2018
  • 맵리듀스는 하둡의 필수 핵심 기술로 하둡 분산 파일 시스템을 기반으로 빅데이터를 처리하는 가장 보편화되어 사용되고 있다. 그러나 기존 맵리듀스 기반 빅데이터 처리 기법은 하둡 분산 파일 시스템에 정해진 블록의 크기대로 파일 나눠 저장되는 특징으로 인해 인프라 자원의 낭비가 극심하다. 이에 본 논문에서는 효율적인 맵리듀스 기반 빅데이터 처리기법을 제안한다. 제안하는 기법은 처리할 데이터를 사전에 맵리듀스에서 처리하기 적합한 데이터 형태로 변환 및 압축하여 빅데이터 인프라 환경의 저장 효율성을 증가시킨다. 또한 제안하는 기법은 저장 효율성을 중점으로 구현했을 때 발생할 수 있는 데이터 처리 시간의 지연 문제를 해결한다.

제조업 종사자들의 빅데이터시스템 사용의도에 대한 결정요인의 영향 (The Effect of the Determinants on the Intention-to-Use of Big Data System in Manufacturing Industry)

  • 손달호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권3호
    • /
    • pp.159-175
    • /
    • 2021
  • Purpose The purpose of this study was to find the effect of the determinants on the Big data utilization in industry. The determinants of Big data utilization were deduced by reviewing theoretical background and discussions on Big data related researches. Research model and proposed hypothesis were constructed from TOE framework and UTAUT model. Design/methodology/approach The research was conducted to collect a sample data from the experts involved in the Big data projects in industry. In addition, interviews and online survey were performed to get sample data. Exploratory factor analysis was conducted to verify the grouping of these questionnaire items and confirmatory factor analysis was done to verify the validity and reliability of the measurement model. Finally, research hypothesis was verified and theoretical and practical implications were proposed for further studies. Findings The results show that the technical factor have a significant effect on the expectancy factor and the behavioral factor. The organizational factor have a significant effect on the behavioral factor. In addition, the expectancy factor was significant on the behavioral factor and the intention-to-use of Big data system.

공간 빅데이터 서비스 활성화를 위한 정책과제 도출 (Deduction of the Policy Issues for Activating the Geo-Spatial Big Data Services)

  • 박준민;이명호;신동빈;안종욱
    • Spatial Information Research
    • /
    • 제23권6호
    • /
    • pp.19-29
    • /
    • 2015
  • 본 연구는 공간 빅데이터 서비스 활성화를 위한 정책과제 도출을 목적으로 수행하였다. 이를 위해 관련 선행연구를 검토하고, 국내 외 공간 빅데이터 관련 추진체계 및 정책현황을 분석하였다. 그 결과 미래 공간정보 융 복합 대응정책 미흡, 개인정보 보호 및 서비스 활성화 제도적 기반 미흡, 관련 기술 정책 마련 미흡, 공간 빅데이터 구축 활용을 위한 추진체계 미흡, 공공정보의 품질저하와 공유체계 미흡 등의 문제점이 도출되었다. 다음으로 도출된 문제점을 해결하기 위해 정책 추진방향을 설정하고, 공간 빅데이터 추진체계 마련, 관련 법 제도 개선, 공간 빅데이터 관련 기술 개발, 공간 빅데이터 지원 사업 추진, 공공DB 융 복합 공유체계 마련 총 5가지의 정책과제를 제시하였다.

빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로 (An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework)

  • 가회광;김진수
    • Asia pacific journal of information systems
    • /
    • 제24권4호
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

Financial and Economic Risk Prevention and Countermeasures Based on Big Data and Internet of Things

  • Songyan Liu;Pengfei Liu;Hecheng Wang
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.391-398
    • /
    • 2024
  • Given the further promotion of economic globalization, China's financial market has also expanded. However, at present, this market faces substantial risks. The main financial and economic risks in China are in the areas of policy, credit, exchange rates, accounting, and interest rates. The current status of China's financial market is as follows: insufficient attention from upper management; insufficient innovation in the development of the financial economy; and lack of a sound financial and economic risk protection system. To further understand the current situation of China's financial market, we conducted a questionnaire survey on the financial market and reached the following conclusions. A comprehensive enterprise questionnaire from the government's perspective, the enterprise's perspective and the individual's perspective showed that the following problems exist in the financial and economic risk prevention aspects of big data and Internet of Things in China. The political system at the country's grassroots level is not comprehensive enough. The legal regulatory system is not comprehensive enough, leading to serious incidents of loan fraud. The top management of enterprises does not pay enough attention to financial risk prevention. Therefore, we constructed a financial and economic risk prevention model based on big data and Internet of Things that has effective preventive capabilities for both enterprises and individuals. The concept reflected in the model is to obtain data through Internet of Things, use big data for screening, and then pass these data to the big data analysis system at the grassroots level for analysis. The data initially screened as big data are analyzed in depth, and we obtain the original data that can be used to make decisions. Finally, we put forward the corresponding opinions, and their main contents represent the following points: the key is to build a sound national financial and economic risk prevention and assessment system, the guarantee is to strengthen the supervision of national financial risks, and the purpose is to promote the marketization of financial interest rates.

스마트 팩토리 환경에서의 GlusterFS 기반 빅데이터 분산 처리 시스템 설계 (Design of GlusterFS Based Big Data Distributed Processing System in Smart Factory)

  • 이협건;김영운;김기영;최종석
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.70-75
    • /
    • 2018
  • 스마트 팩토리는 설계 개발, 제조, 유통 물류 등 생산 전체 과정에 정보 통신 기술을 적용하여 생산성, 품질, 고객만족도 등을 향상시킬 수 있는 지능형 공장이다. 스마트 팩토리에서 발생되는 데이터의 양은 공장의 규모 및 시설 수준에 따라 많은 차이를 보이지만, 기존의 생산관리시스템을 활용하여 방대한 양의 데이터를 발생시키는 스마트 팩토리 환경에 적용하기에 어려움이 있다. 이로 인해 방대한 양의 빅데이터 처리할 수 있는 빅데이터 분산 처리 시스템의 필요성이 요구되고 있다. 따라서 본 논문에서는 스마트 팩토리 환경에서의 GlusterFS 기반 빅데이터 분산 처리 시스템 설계하였다. 제안하는 빅데이터 분산 처리 시스템은 기존 분산 처리 시스템에 비해 네트워크 트래픽 분산 및 관리를 통해 부하와 데이터 소실 위험도를 감소시켰다.