Journal of the Korea Society of Computer and Information
/
v.26
no.8
/
pp.39-46
/
2021
When conducting social big data analysis for franchise stores, reviews of multiple branches of a franchise can be collected together, from which analysis results can be distorted significantly. To improve its accuracy, it should be possible to filter reviews of other branches properly which are not subject to the analysis. This paper presents a method for social big data analysis which reflects characteristics of franchise stores. The proposed method consists of search key configuration and review filtering. For the former, the open data provided by Small Business Promotion Agency is used to extract region names for collecting reviews more accurately. For the latter, open search APIs provided by Naver or Kakao are used to obtain franchise branch information for filtering reviews of other branches that are not subject to analysis. To verify performance of the proposed method, experiments were conducted based on real social reviews collected from online, where the results showed that the accuracy of the proposed review filtering was 93.6% on the average.
Journal of the Korean Operations Research and Management Science Society
/
v.39
no.4
/
pp.51-69
/
2014
Times to multiple events (TMEs) are a major data type in large-scale business and medical data. Despite its importance, the analysis of TME data has not been well studied because of the analysis difficulty from censoring of observation. To address this difficulty, we have developed a Bayesian-based multivariate survival analysis method, which can successfully estimate the joint probability density of survival times. In this work, we extended this method for the analysis of precedence, dependency and causality among multiple events. We applied this method to the electronic health records of 2,111 patients in a children's hospital in the US and the proposed analysis successfully shows the relation between times to two types of hospital visits for different medical issues. The overall result implies the usefulness of the multivariate survival analysis method in large-scale big data in a variety of areas including marketing, human resources, and e-commerce. Lastly, we suggest our future research directions based multivariate survival analysis method.
Journal of Korean Society of Industrial and Systems Engineering
/
v.39
no.2
/
pp.54-63
/
2016
As technology has developed and cost for data processing has reduced, big data market has grown bigger. Developed countries such as the United States have constantly invested in big data industry and achieved some remarkable results like improving advertisement effects and getting patents for customer service. Every company aims to achieve long-term survival and profit maximization, but it needs to establish a good strategy, considering current industrial conditions so that it can accomplish its goal in big data industry. However, since domestic big data industry is at its initial stage, local companies lack systematic method to establish competitive strategy. Therefore, this research aims to help local companies diagnose their big data capabilities through a reference model and big data capability assessment system. Big data reference model consists of five maturity levels such as Ad hoc, Repeatable, Defined, Managed and Optimizing and five key dimensions such as Organization, Resources, Infrastructure, People, and Analytics. Big data assessment system is planned based on the reference model's key factors. In the Organization area, there are 4 key diagnosis factors, big data leadership, big data strategy, analytical culture and data governance. In Resource area, there are 3 factors, data management, data integrity and data security/privacy. In Infrastructure area, there are 2 factors, big data platform and data management technology. In People area, there are 3 factors, training, big data skills and business-IT alignment. In Analytics area, there are 2 factors, data analysis and data visualization. These reference model and assessment system would be a useful guideline for local companies.
International journal of advanced smart convergence
/
v.8
no.1
/
pp.87-97
/
2019
Data mining technology is applied to various fields because it is a technique for analyzing vast amount of data and finding useful information. In this paper, we propose a big data analysis method that uses Apriori algorithm, which is a data mining technique, to find the related factors that have negative and positive influences on school adjustment. Among Korea Child and Youth Panel Survey(KCYPS), data related to adjustment to school life and data showing parental inclinations were extracted from the data of fourth grade elementary school students, first year middle school students, and high school freshman students, respectively and we have mapped the useful association rules among them. As a result, the factors affecting school adjustment were different according to the timing of the growth process, we were able to find interesting rules by looking for connections between rules. On the other hand, the factors that positively influenced school adjustment were not significantly different from each other, and overall, they were associated with positive variables.
This study attempted to explore and examine a new user experience (UX) research method for IoT products which are becoming widely used but lack practical user research. While user experience research has been traditionally opted for survey or observation methods, this paper utilized big data analysis method for user online reviews on an intelligent agent IoT product, Amazon's Echo. The results of topic modelling analysis extracted user experience elements such as features, conversational interaction, and updates. In addition, regression analysis showed that the topic of updates was the most influential determinant of user satisfaction. The main implication of this study is the new introduction of big data analysis method into the user experience research for the intelligent agent IoT products.
The use of text data in big data analytics has been increased. So, much research on methods for text data analysis has been performed. In this paper, we study Bayesian learning based on conjugate prior for analyzing keyword data extracted from text big data. Bayesian statistics provides learning process for updating parameters when new data is added to existing data. This is an efficient process in big data environment, because a large amount of data is created and added over time in big data platform. In order to show the performance and applicability of proposed method, we carry out a case study by analyzing the keyword data from real patent document data.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.140-141
/
2017
Big data analysis, in the large amount of data stored as the data warehouse which it refers the process of discovering meaningful new correlations, patterns, trends and creating new values. Thus, Big data analysis is an effective analysis of various big data that exist all over the world such as social big data, machine to machine (M2M) sensor data, and corporate customer relationship management data. In the big data era, it has become more important to effectively analyze not only structured data that is well organized in the database, but also unstructured big data such as the internet, social network services, and explosively generated web documents, e-mails, and social data in mobile environments. By the way, a meta analysis refers to a statistical literature synthesis method from the quantitative results of many known empirical studies. We reviewed a total of 750 samples among 50 studies published on the topic related as IDT between 2000 and 2017 in Korea.
Purpose: Big Data analytics (BDA) has been recognized to improve firm performance because it can efficiently manage and process large-scale, wide variety, and complex data structures. This study examines the determinants of Big Data analytics adoption toward marketing and financial performance of global logistic companies in Thailand. The research framework is adopted from the technology-organization-environment (TOE) model, including technological factors (relative advantages), organizational factors (technological infrastructure and absorptive capability), environmental factors (industry competition and government support), Big Data analytics adoption, marketing performance, and financial performance. Research design, data, and methodology: A quantitative method is applied by distributing the survey to 450 employees at the manager's level and above. The sampling methods include judgmental, stratified random, and convenience sampling. The data were analyzed by Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM). Results: The results showed that all factors significantly influence Big Data analytics adoption, except technological infrastructure. In addition, Big Data analytics adoption significantly influences marketing and financial performance. Conversely, marketing performance has no significant influence on financial performance. Conclusions: The findings of this study can contribute to the strategic improvement of firm performance through Big Data analytics adoption in the logistics, distribution, and supply chain industries.
As the value of using Big Data is increasing, various researches are being carried out utilizing big data analysis technology in the field of education as well as corporations. In this paper, we propose a method to predict learning achievement using big data cluster analysis. In the proposed method, students in Korea Children and Youth Panel Survey(KCYPS) are classified into groups with similar learning habits using the Kmeans algorithm based on the learning habits of students of the first year at middle school, and group features are extracted. Next, using the extracted features of groups, the first grade students at the middle school in the test group were classified into groups having similar learning habits using the cosine similarity, and then the neighbors were selected and the learning achievement was predicted. The method proposed in this paper has proved that the learning habits at middle school are closely related to at the university, and they make it possible to predict the learning achievement at high school and the satisfaction with university and major.
Educational data analysis is attracting increasing attention with the rise of the big data industry. The amounts and types of learning data available are increasing steadily, and the information technology required to analyze these data continues to develop. The early identification of potential dropout students is very important; education is important in terms of social movement and social achievement. Here, we analyze educational data and generate predictive models for student dropout using logistic regression, a decision tree, a naïve Bayes method, and a multilayer perceptron. The multilayer perceptron model using independent variables selected via the variance analysis showed better performance than the other models. In addition, we experimentally found that not only grades but also extracurricular activities were important in terms of preventing student dropout.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.