Choi, Jae Mun;Jeong, Doo Won;Yoon, Jong Seong;Lee, Sang Jin
KIPS Transactions on Computer and Communication Systems
/
v.5
no.5
/
pp.117-126
/
2016
Recently, increasing utilization of Big Data or Social Network Service involves the increases in demand for NoSQL Database that overcomes the limitations of existing relational database. A forensic examination of Relational Database has steadily researched in terms of Digital Forensics. In contrast, the forensic examination of NoSQL Database is rarely studied. In this paper, We introduce Redis (which is) based on Key-Value Store NoSQL Database, and research the collection and analysis of forensic artifacts then propose recovery method of deleted data. Also we developed a recovery tool, it will be verified our recovery algorithm.
KIPS Transactions on Software and Data Engineering
/
v.9
no.11
/
pp.329-331
/
2020
Edutech is a compound word of education and technology, and is an educational paradigm in the era of the 4th industrial revolution. This refers to next-generation education using information and communication technology (ICT) such as big data, artificial intelligence (AI), robots, and virtual reality (VR) of the 4th industrial revolution. e-Learning is being used as an online lecture for education in ICT, but edutech is attracting attention along with e-learning as the feeding of non-face-to-face education has rapidly increased due to COVID-19. Therefore, this paper summarizes the reviewed papers on the blockchain-based badge service platform, simulation-based collaborative e-Learning system, video English dictionary, and blockchain-based access control audit system.
Kim, Min-Woo;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.109-110
/
2019
최근 IoT 환경에서는 고밀도로 노드가 분포되어진다. 이러한 센서 노드들은 데이터 전송 시 혼잡을 초래하는 중복 데이터를 생성하여 데이터의 정확도를 저하시킨다. 이에 따라 본 연구에서는 데이터 집중으로 인해 발생하는 네트워크의 정체 문제를 해결하기 위해 제안 기법은 사 분위(Interquatile, IRQ) 분석과 코사인 유사도 함수를 통해 데이터의 이상치와 중복성을 측정하여 중복 데이터 및 특이치를 제거한다. 본 연구를 통하여 최적의 데이터 전송을 통하여 IoT의 통신 성능을 향상시킬 수 있으며 결과적으로 데이터 감소율, 네트워크 수명 및 에너지의 효율성을 높일 수 있다.
Recently, social and economic environment has been rapidly changed. In particular, the development of IT technology accelerated the introduction of databases, communication networks, information processing and analyzing systems, making the use of such information and communication technology an essential factor for corporate management innovation. This change also affected the accounting areas. The purpose of this study is to document changes in accounting areas due to the adoption of IT technologies in the era of technology and information, to define the required accounting professions in this era, and to present the efficient educational methodologies for training such accounting experts. An accounting expert suitable for the era of technology and information means an accounting profession not only with basic accounting knowledge, competence, independency, reliability, communication skills, and flexible interpersonal skills, but also with IT skills, data utilization and analysis skills, the understanding big data and artificial intelligence, and blockchain-based accounting information systems. In order to educate future accounting experts, the accounting curriculum should be reorganized to strengthen the IT capabilities, and it should provide a wide variety of learning opportunities. It is also important to provide a practical level of education through industry and academic cooperation. Distance learning, web-based learning, discussion-type classes, TBL, PBL, and flipped-learnings will be suitable for accounting education methodologies to foster future accounting experts. This study is meaningful because it can motivate to consider accounting educational system and curriculum to enhance IT capabilities.
Visual analytics is an emerging research field that combines the strength of electronic data processing and human intuition-based social background knowledge. This study demonstrates useful visual analytics with Tableau in conjunction with semantic network analysis using examples of sentiment flow and strategic communication strategies via Twitter in a blockchain domain. We comparatively investigated the sentiment flow over time and language usage patterns between companies with a good reputation and firms with a poor reputation. In addition, this study explored the relations between reputation and marketing communication strategies. We found that cryptocurrency firms more actively produced information when there was an increased public demand and increased transactions and when the coins' prices were high. Emotional language strategies on social media did not affect cryptocurrencies' reputations. The pattern in semantic representations of keywords was similar between companies with a good reputation and firms with a poor reputation. However, the reputable firms communicated on a wide range of topics and used more culturally focused strategies, and took more advantages of social media marketing by expanding their outreach to other social media networks. The visual big data analytics provides insights into business intelligence that helps informed policies.
Journal of the Korea Society of Computer and Information
/
v.29
no.6
/
pp.61-67
/
2024
In this paper, we presented a strengthening plan to prevent personal information leakage incidents by securing legal compliance for personal information impact assessment and suggesting measures to strengthen privacy during personal information impact assessment. Recently, as various services based on big data have been created, efforts are being made to protect personal information, focusing on the EU's GDPR and Korea's Personal Information Protection Act. In this society, companies entrust processing of personal information to provide customized services based on the latest technology, but at this time, the problem of personal information leakage through consignees is seriously occurring. Therefore, the use of personal information by trustees.
Journal of Korea Artificial Intelligence Association
/
v.1
no.1
/
pp.11-16
/
2023
Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.
Park, Seong-Hi;Suh, Jun-Kyu;Yoon, Hye-Seol;Hong, Jin-Young;Park, Gun-Je
Quality Improvement in Health Care
/
v.5
no.2
/
pp.202-215
/
1998
Purpose : To shorten processing time for variety of medical affairs of the patient at the outpatient clinic of a big hospital is very important to qualify medical care of the patient. Therefore, patient's waiting time for drug delivery after doctor's prescription is often utilized as a strong tool to evaluate patient satisfaction with a medical care provided. We performed this study to investigate factors influencing patient satisfaction related with waiting time for drug delivery. Methods : The data were collected from July 21 to August 12, 1998. A total 535 patients or their families who visited outpatient clinics of Inha University Hospital were subjected to evaluate the drug delivery time and the level of their satisfaction related, which were compared with those objectively evaluated by Quality Improvement Team. The reliability of the scale was tested with Cronbach's alpha, and the data were analyzed using frequency, t-test, ANOVA, correlation analysis and multiple regression. Results : The mean drug delivery time subjectively evaluated by the patient (16.1 13.0 min) was longer than that objectively evaluated (10.9 7.6 min) by 5.2 min. Drug delivery time objectively evaluated was influenced by the prescription contents, total amount or type of drug dispensed, etc, as expected. The time discrepancy between two evaluations was influenced by several causative factors. One of those proved to be a patient's late response to the information from the pharmacy which the drug is ready to deliver. Interestingly, this discrepancy was found to be more prominent especially when waiting place for drug delivery was not less crowded. Other factors, pharmaceutical counseling at the pharmacy, emotional status or behavior of a patient while he waits for the medicine, were also found to influence the time subjectively evaluated. Regarding the degree of patient satisfaction with the drug delivery, majority of patients accepted drug delivery time with less than 10 min. It was also found to be influenced by emotional status of the patient as well as kindness or activity of pharmaceutical counselor. Conclusion : The results show that, besides prescription contents, behavior pattern or emotional status of a patient, environment of the waiting place, and quality of pharmaceutical counseling at the pharmacy, may influence the patient's subjective evaluation of waiting time for drug delivery and his satisfaction related with the service in the big hospital. In order to improve patient satisfaction related with waiting time for drug delivery, it will be cost effective to qualify pharmaceutical counseling and information system at the drug delivery site or waiting place rather than to shorten the real processing time within the pharmacy.
Disease of patient who visited the hospital can cause different symptoms of the disease, depending on the environment and lifestyle. Recent medical services offered in patients has changed in the environment that can be selected for treatment by analyzing the patient according to the disease symptoms. In this paper, we propose an efficient method to manage disease control because the treatment method may change at any patients suffering from the disease according to the patient conditions by grouping the different treatments to patients for disease information. The proposed scheme has a feature that can be ingested by the patient big disease information, as well as to improve the treatment efficiency of the medical treatment the increase patient satisfaction. The proposed sheme can handle big data by clustering of disease information for patients suffering from diseases such as patient consent small groups. In addition, the proposed scheme has the advantage that can be conveniently accessed via a particular keyword, the treatment method according to patient disease information. The experimental results, the proposed method has been improved by 23% in terms of efficiency compared to conventional techniques, disease management time is gained 11.3% improved results. Medical service user satisfaction seen from the survey is to obtain a high 31.5% results.
Recent technological advances in three-dimensional (3D) sensing devices and machine learning such as deep leaning has enabled data-driven 3D applications. Research on artificial intelligence has developed for the past few years and 3D deep learning has been introduced. This is the result of the availability of high-quality big data, increases in computing power, and development of new algorithms; before the introduction of 3D deep leaning, the main targets for deep learning were one-dimensional (1D) audio files and two-dimensional (2D) images. The research field of deep leaning has extended from discriminative models such as classification/segmentation/reconstruction models to generative models such as those including style transfer and generation of non-existing data. Unlike 2D learning, it is not easy to acquire 3D learning data. Although low-cost 3D data acquisition sensors have become increasingly popular owing to advances in 3D vision technology, the generation/acquisition of 3D data is still very difficult. Even if 3D data can be acquired, post-processing remains a significant problem. Moreover, it is not easy to directly apply existing network models such as convolution networks owing to the various ways in which 3D data is represented. In this paper, we summarize technological trends in AI-based 3D content generation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.