The log data generated by security equipment have been synthetically analyzed on the ESM(Enterprise Security Management) base so far, but due to its limitations of the capacity and processing performance, it is not suited for big data processing. Therefore the another way of technology on the big data platform is necessary. Big Data platform can achieve a large amount of data collection, storage, processing, retrieval, analysis, and visualization by using Hadoop Ecosystem. Currently ESM technology has developed in the way of SIEM (Security Information & Event Management) technology, and to implement security technology in SIEM way, Big Data platform technology is essential that can handle large log data which occurs in the current security devices. In this paper, we have a big data platform Hadoop Ecosystem technology for analyzing the security log for sure how to implement the system model is studied.
Journal of The Korean Association of Information Education
/
v.24
no.2
/
pp.201-214
/
2020
Big data is gradually expanding in diverse fields, with changing the data-related legislation. Moreover it would be interest in big data education. However, it requires a high level of knowledge and skills in order to utilize Big Data and it takes a long time for education spends a lot of money for training. We study that in order to define Universal Big Data used to the industrial field in a wide range. As a result, we make the paradigm for Big Data education for college students. We survey to the professional the Big Data definition and the Big Data perception. According to the survey, the Big Data related-professional recognize that is a wider definition than Computer Science Big Data is. Also they recognize that the Big Data Processing dose not be required Big Data Processing Frameworks or High Performance Computers. This means that in order to educate Big Data, it is necessary to focus on the analysis methods and application methods of Universal Big Data rather than computer science (Engineering) knowledge and skills. Based on the our research, we propose the Universal Big Data education on the new paradigm.
Social network technology has been increasing interest in the big data service and development. However, the data stored in the distributed server and not on the central server technology is easy enough to find and extract. In this paper, we propose a big data management techniques to minimize the processing time of information you want from the content server and the management server that provides big data services. The proposed method is to link the in-group data, classified data and groups according to the type, feature, characteristic of big data and the attribute information applied to a hash chain. Further, the data generated to extract the stored data in the distributed server to record time for improving the data index information processing speed of the data classification of the multi-attribute information imparted to the data. As experimental result, The average seek time of the data through the number of cluster groups was increased an average of 14.6% and the data processing time through the number of keywords was reduced an average of 13%.
Purpose: The three Vs of volume, velocity and variety are commonly used to characterize different aspects of Big Data. Volume refers to the amount of data, variety refers to the number of types of data and velocity refers to the speed of data processing. According to these characteristics, the size of Big Data varies rapidly, some data buckets will contain outliers, and buckets might have different sizes. Correlation plays a big role in Big Data. We need something better than usual correlation measures. Methods: The correlation measures offered by traditional statistics are compared. And conditions to meet the characteristics of Big Data are suggested. Finally the correlation measure that satisfies the suggested conditions is recommended. Results: Mutual Information satisfies the suggested conditions. Conclusion: This article builds on traditional correlation measures to analyze the co-relation between two variables. The conditions for correlation measures to meet the characteristics of Big Data are suggested. The correlation measure that satisfies these conditions is recommended. It is Mutual Information.
In near future, IoT data is expected to be a major portion of Big Data. Moreover, sensor data is expected to be major portion of IoT data, and its' research is actively carried out currently. However, processed results may not be trusted and used if outlier data is included in the processing of sensor data. Therefore, method for detection and deletion of those outlier data before processing is studied in this paper. Moreover, we used Spark which is memory based distributed processing environment for fast processing of big sensor data. The detection and deletion of outlier data consist of four stages, and each stage is implemented with Mapper and Reducer operation. The proposed method is compared in three different processing environments, and it is expected that the outlier detection and deletion performance is best in the distributed Spark environment as data volume is increasing.
International journal of advanced smart convergence
/
v.5
no.2
/
pp.59-65
/
2016
With the recent growth in cloud computing, big data processing and collaboration between businesses are emerging as new paradigms in the IT industry. In an environment where a large amount of data is generated in real time, such as SNS, big data processing techniques are useful in extracting the valid data. MapReduce is a good example of such a programming model used in big data extraction. With the growing collaboration between companies, problems of duplication and heterogeneity among data due to the integration of old and new information storage systems have arisen. These problems arise because of the differences in existing databases across the various companies. However, these problems can be negated by implementing the MapReduce technique. This paper proposes a collaboration system based on Database as a Service, or DBaaS, to solve problems in data integration for collaboration between companies. The proposed system can reduce the overhead in data integration, while being applied to structured and unstructured data.
Journal of the Korea Society of Computer and Information
/
v.21
no.8
/
pp.77-84
/
2016
In general statistical analysis, we need to make a normal assumption. If this assumption is not satisfied, we cannot expect a good result of statistical data analysis. Most of statistical methods processing the outlier and noise also need to the assumption. But the assumption is not satisfied in big data because of its large volume and heterogeneity. So we propose a methodology based on box-plot and data smoothing for controling outlier and noise in big data analysis. The proposed methodology is not dependent upon the normal assumption. In addition, we select patent documents as target domain of big data because patent big data analysis is a important issue in management of technology. We analyze patent documents using big data learning methods for technology analysis. The collected patent data from patent databases on the world are preprocessed and analyzed by text mining and statistics. But the most researches about patent big data analysis did not consider the outlier and noise problem. This problem decreases the accuracy of prediction and increases the variance of parameter estimation. In this paper, we check the existence of the outlier and noise in patent big data. To know whether the outlier is or not in the patent big data, we use box-plot and smoothing visualization. We use the patent documents related to three dimensional printing technology to illustrate how the proposed methodology can be used for finding the existence of noise in the searched patent big data.
In order to utilize big data in general industrial sites, the structured big data collected from facilities, processes, and environments of industrial sites must first be processed and stored, and in the case of unstructured data, it must be stored as unstructured data or converted into structured data and stored in a database. In this paper, we study a method of collecting big data based on open IoT standards that can converge and utilize measurement information, environmental information of industrial sites to collect big data. The platform for collecting big data proposed in this paper is capable of collecting, processing, and storing big data at industrial sites to process real-time sensing information. For processing and analyzing data according to the purpose of the stored industrial, various big data technologies also can be applied.
We usually suffer from difficulties in treating or managing Big Data generated from various digital media and/or sensors using traditional mining techniques. Additionally, there are many problems relative to the lack of memory and the burden of the learning curve, etc. in an increasing capacity of large volumes of text when new data are continuously accumulated because we ineffectively analyze total data including data previously analyzed and collected. In this paper, we propose a general-purpose classifier and its structure to solve these problems. We depart from the current feature-reduction methods and introduce a new scheme that only adopts changed elements when new features are partially accumulated in this free-style learning environment. The incremental learning module built from a gradually progressive formation learns only changed parts of data without any re-processing of current accumulations while traditional methods re-learn total data for every adding or changing of data. Additionally, users can freely merge new data with previous data throughout the resource management procedure whenever re-learning is needed. At the end of this paper, we confirm a good performance of this method in data processing based on the Big Data environment throughout an analysis because of its learning efficiency. Also, comparing this algorithm with those of NB and SVM, we can achieve an accuracy of approximately 95% in all three models. We expect that our method will be a viable substitute for high performance and accuracy relative to large computing systems for Big Data analysis using a PC cluster environment.
본 논문은 실시간 데이터 분석을 위한 컨테이너 가상화 기술 사용에 대한 효용성을 알아보기 위해 HDP 와 MapR 배포판에 포함된 Spark 를 도커라이징 전과 후 환경에 설치 후 HiBench 벤치마크 프로그램을 이용해 성능을 측정하였다. 그리고 성능 측정치에 대해 대응표본 t 검정을 이용하여 도커라이징 전과 후의 성능 차이가 있는지를 통계적으로 분석하였다. 분석 결과, HDP 는 도커라이징 전과 후에 대한 성능 차이가 있었지만 MapR 은 성능 차이가 없었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.